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Chapter 1

Introduction

1.1 Overview

This is a short overview of the vast subject of black holes. It specifically highlights those

issues which are relevant for the present thesis. The search for a theory of quantum

gravity drives a great deal of research in theoretical physics today, and much has been

learned along the way, but convincing success remains elusive. There are two parts of

general relativity: the framework of space-time curvature and its influence on matter, and

the dynamics of the metric in response to energy-momentum (as described by Einstein’s

equation). Lacking the true theory of quantum gravity, we may still take the first part

of GR - the idea that matter fields propagate on a curved space-time background - and

consider the case where those matter fields are quantum mechanical. In other words, we

take the metric to be fixed, rather than obeying some dynamical equations, and study

quantum field theory in the curved space-time.

Classical solutions of Einstein’s equation gives several metrics of space-time in absence

(Schwarzschild metric) or in presence (e.g. Reissner-Nordstrom metric) of matter fields.

Both of these solutions show there exists a region of space-time in which information can

enter, but nothing can come out from it. The partition that separates this region (known

as black hole) is usually called the event horizon. The black holes are usually formed

from the collapse of star etc. According to the No Hair theorem, collapse leads to a

black hole endowed with small number of macroscopic parameters (mass, charge, angular

momentum) with no other free parameters. All these are classical pictures.

1
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Hawking showed that the area of a black hole never decreases - known as area theorem

[1]. This fact attracted Bekenstein a lot. A simple thought experiment led him to

associate entropy with the black hole. Then he [2] proposed that a black hole has an

entropy Sbh which is some finite multiple η of its area of the event horizon A. He was

not able to determine the exact value of η, but gave heuristic arguments for conjecturing

that it was ln2
8π

. Also, several investigations reveled that classical black hole mechanics

can be summarized by the following three basic laws [3],

1. Zeroth law : The surface gravity κ of a black hole is constant on the horizon.

2. First law : The variations in the black hole parameters, i.e mass M , area A, angular

momentum L, and charge Q, obey

δM =
κ

8π
δA+ ΩδL− V δQ (1.1)

where Ω and V are the angular velocity and the electrostatic potential, respectively.

3. Second law : The area of a black hole horizon A is nondecreasing in time [1],

δA ≥ 0. (1.2)

These laws have a close resemblance to the corresponding laws of thermodynamics. The

zeroth law of thermodynamics says that the temperature is constant throughout a system

in thermal equilibrium. The first law states that in small variations between equilibrium

configurations of a system, the changes in the energy and entropy of the system obey

equation (1.1), if the surface gravity κ is replaced by a term proportional to temperature

of the system (other terms on the right hand side are interpreted as work terms). The

second law of thermodynamics states that, for a closed system, entropy always increases

in any (irreversible or reversible) process. Therefore from Bekenstein’s argument and the

first law of black hole mechanics one might say TH = εκ and Sbh = ηA with 8πηε = 1.

Bekenstein proposed that η is finite and it is equal to ln2
8π

. Then one would get ε = 1
ln2

and so TH = κ
ln2

.

Later on, the study of QFT in curved space-time by Hawking in 1974-75 [4, 5] showed

that black holes are not really black, instead emit thermal radiation at temperature (TH)
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proportional to surface gravity (κ) of black hole - popularly known as Hawking effect.

The exact expression was found to be [5]:

TH =
~cκ

2πkB
, (1.3)

where c, ~ and kB are respectively the velocity of light, plank constant and Boltzmann

constant. This is known as Hawking temperature 1. For the Schwarzschild black hole

κ = c2

4GM
where M is the mass of the black hole and G is the gravitational constant. All

these reflects the fact that Hawking effect incorporates quantum mechanics, gravity as

well as thermodynamics. The key idea behind quantum particle production in curved

space-time is that the definition of a particle is vacuum dependent. It depends on the

choice of reference frame. Since the theory is generally covariant, any time coordinate,

possibly defined only locally within a patch, is a legitimate choice with which to define

positive and negative frequency modes. Hawking considered a massless quantum scalar

field moving in the background of a collapsing star. If the quantum field was initially in

the vacuum state (no particle state) defined in the asymptotic past, then at late times

it will appear as if particles are present in that state. Hawking showed [5], by explicit

computation of the Bogoliubov coefficients (see also [6, 7] for detailed calculation of

Bogoliubov coefficients) between the two sets of vacuum states defined at asymptotic

past and future respectively, that the spectrum of the emitted particles is identical to

that of black body with the temperature (1.3). This remarkable discovery indeed helps

us to get various physical information about the classically forbidden region inside the

horizon. Since then people thought that the black holes may play a major role in the

attempts to shed some light on the nature of quantum theory of gravity as the role played

by atoms in early development of quantum mechanics. Hence QFT on curved space-time

and Hawking effect attracted the physicists for their beauty and usefulness in various

aspects.

Hawking then realised that Bekenstein’s idea was consistent. In fact, since the black

hole temperature is given by (1.3), ε = 1
2π

and hence η = 1
4
. This leads to the famous

1Although in (1.3) we keep all the fundamental constants explicitly, for later analysis, whenever any

particular unit will be chosen, that will be mentioned there.
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Bekenstein-Hawking area law for entropy of black hole

Sbh =
A

4
, (1.4)

where A is the area of the event horizon 2. This astonishing result is obtained using the

approximation that the matter field behaves quantum mechanically but the gravitational

field (metric) satisfy the classical Einstein equation. This semi-classical approximation

holds good for energies below the Planck scale [5]. Although it is a semi-classical result,

Hawking’s computation is considered an important clue in the search for a theory of

quantum gravity. Any theory of quantum gravity that is proposed must predict black

hole evaporation.

Apart from Hawking’s original calculation there are other semi-classical approaches.

We summarise these briefly. S. Hawking and G. Gibbons, in 1977 [8] developed an

approach based on the Euclidean quantum gravity. In this approach they computed an

action for gravitational field, including the boundary term, on the complexified space-

time. The purely imaginary values of this action gives a contribution of the metrics to the

partition function for a grand canonical ensemble at Hawking temperature (1.3). Using

this, they were able to show that the entropy associated with these metrics is always equal

to (1.4). Almost at the same time, Christensen and Fulling [9], by exploiting the structure

of trace anomaly, were able to obtain the expectation value for each component of the

stress tensor 〈Tµν〉, which eventually lead to the Hawking flux. This approach is exact in

(1+1) dimensions, however in 3+1 dimensions, the requirements of spherical symmetry,

time independence and covariant conservation are not sufficient to fix completely the

flux of Hawking radiation in terms of the trace anomaly [6, 9]. There is an additional

arbitrariness in the expectation values of the angular components of the stress tensor.

Later on, S. Robinson and F. Wilczek [10, 11, 12] gave a new approach to compute

the Hawking flux from a black hole. This approach is based on gauge and gravitational

or diffeomorphism anomalies. Basic and essential fact used in their analysis is that the

theory of matter fields (scalar or fermionic) in the 3 + 1 dimensional static black hole

background can effectively be represented, in the vicinity of event horizon, by an infinite

collection of free massless 1+1 dimensional fields, each propagating in the background of

2Here all the fundamental constants are chosen to be unity.
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an effective metric given by the r−t sector of full 3+1 dimensional metric 3. By definition

the horizon is a null surface and hence the region inside it is causally disconnected from

the exterior. Thus, in the region near to the horizon the modes which are going into

the black hole do not affect the physics outside the horizon. In other words, the theory

near the event horizon acquires a definite chirality. Any two dimensional chiral theory

in general curved background possesses both gauge and gravitational anomaly [15]. This

anomaly is manifested in the nonconservation of the current or the stress tensor. The

theory far away from the event horizon is 3+1 dimensional and anomaly free and the stress

tensor in this region satisfies the usual conservation law. Consequently, the total energy-

momentum tensor, which is a sum of two contribution from the two different regions,

is also anomalous. However, it becomes anomaly free once we take into account the

contribution from classically irrelevant ingoing modes. This imposes restrictions on the

structure of the energy-momentum tensor and is ultimately responsible for the Hawking

radiation [10]. The expression for energy-momentum flux obtained by this anomaly

cancellation approach is in exact agreement with the flux from the perfectly black body

kept at Hawking temperature [10]. In this approach they used consistent expression for

anomaly (satisfying Wess-Zumino consistency condition) but used a covariant boundary

condition.

Recently, a technically simple (only one Ward identity) and conceptually cleaner (co-

variant expression for anomaly with covariant BC) derivation of Hawking flux was in-

troduced by Banerjee and Kulkarni [16, 17]. In addition to this, a new method [18], to

obtain the Hawking flux using chiral effective action, was put forwarded by them. In all

these approaches, the covariant boundary condition is applied by hand. Later on, it was

shown again by them that such a boundary condition is compatible with the choice of

Unruh vacuum [19]. The connection of the diffeomorphism anomaly approach with the

earlier trace anomaly approach [9] was also elaborated [20, 21].

Interestingly, none of the existing approaches to study Hawking effect, however, cor-

responds directly to one of the heuristic pictures that visualises the source of radiation

as tunneling, first stated in [5]. Later on, this picture was mathematically introduced to

3Such a dimensional reduction of matter fields has been already used in the analysis of [13, 14] to

compute the entropy of 2 + 1 dimensional BTZ black hole.
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discuss the Hawking effect [22, 23]. This picture is similar to an electron-positron pair

creation in a constant electric field. The idea is that pair production occurs inside the

event horizon of a black hole. One member of the pair corresponds to the ingoing mode

and other member corresponds to the outgoing mode. The outgoing mode is allowed

to follow classically forbidden trajectories, by starting just behind the horizon onward

to infinity. So this mode travels back in time, since the horizon is locally to the future

of the external region. The actual physical picture is that the tunneling occures by the

shrinking of the horizon so that the particle effectively moves out. Thus the classical

one particle action becomes complex and so the tunneling amplitude is governed by the

imaginary part of this action for the outgoing mode. However, the action for the ingoing

mode must be real, since classically a particle can fall behind the horizon. This is an

important point of this mechanism as will be seen later. Also, since it is a near horizon

theory and the tunneling occures radially, the phenomenon is effectively dominated by

the two dimensional (t − r) metric. This follows form the fact that near the horizon all

the angular part can be neglected and the solution of the field equation corresponds to

angular quantum number l = 0 which is known as s-wave [22]. Hence, the essence of

tunneling based calculations is, thus, the computation of the imaginary part of the ac-

tion for the process of s-wave emission across the horizon, which in turn is related to the

Boltzmann factor for the emission at the Hawking temperature. It also reveals that the

presence of the event horizon is necessary and the Hawking effect is a completely quan-

tum mechanical phenomenon. There are two different methods in literature to calculate

the imaginary part of the action: one is by Srinivasan et al [22] - the Hamilton-Jacobi

(HJ) method 4 and another is radial null geodesic method which was first given by Parikh

- Wilczek [23] 5. Both these approaces will be discussed in this thesis.

Historically, another phenomenon was discovered by Unruh [30] - Known as Unruh

effect - in an attempt to understand the physics underlying the Hawking effect [5]. The

basic idea of the Unruh effect is based on the equivalence principle - locally gravitational

effect can be ignored by choosing a uniformly accelerated frame and the observers with

different notions of positive and negative frequency modes will disagree on the particle

4For more elaborative discussions and further development on HJ method see [24, 25, 26].

5To find the basis of this method see [27, 28, 29].
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content of a given state. A uniformly accelerated observer on the Minkowski space-time

percives a horizon. The space-time seen by the observer is known as Rindler space-

time and so the observer is usually called as the Rindler observer. Although, an inertial

observer would describe the Minkowski vacuum as being completely empty, the Rindler

observer will detect particles in that vacuum. A detailed calculation tells that the emission

spectrum exactly matches with that of the black body with the temperature given by

[30],

T =
~ã
2π

(1.5)

where a is the accleration of the Rindler observer. The similarity with Hawking temper-

ature is obvious with a→ κ. It is now well understood that Hawking effect is related to

the event horizon of a black hole intrinsic to the space-time geometry while Unruh effect

connects the horizon associated with a uniformly accelerated observer on the Minkowski

space-time.

A unified description of them was first put forward by Deser and Levin [31, 32] followed

from an earlier attempt [33]. This is called the global embedding Minkowskian space

(GEMS) approach. In this approach, the relevant detector in curved space-time (namely

Hawking detector) and its event horizon map to the Rindler detector in the corresponding

higher dimensional flat embedding space [34, 35] and its event horizon. Then identifying

the acceleration of the Unruh detector and using (1.5), the Unruh temperature (or local

Hawking temperature) was calculated. Finally, use of the Tolman relation [36] yields the

Hawking temperature. Subsequently, this unified approach to determine the Hawking

temperature using the Unruh effect was applied for several black hole space-times [37,

38, 39]. However the results were confined to four dimensions and the calculations were

done case by case, taking specific black hole metrics. It was not clear whether the

technique was applicable to complicated examples like the Kerr-Newman metric which

lacks spherical symmetry.

In the mean time, after the discovery of Hawking effect, it was believed that the black

holes may give some hints to find the quantum theory of gravity. It is then natural to

consider quantization of a black hole. This was first pioneered by Bekenstein [40, 41]. The

idea was based on the remarkable observation that the horizon area of a non-extremal
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black hole behaves as a classical adiabatic invariant quantity. In the spirit of the Ehrenfest

principle, any classical adiabatic invariant corresponds to a quantum entity with discrete

spectrum, Bekenstein conjectured that the horizon area of a non-extremal black hole

should have a discrete eigenvalue spectrum. To elucidate the spacing of the area levels he

used Christodoulou’s reversible process [42] - the assimilation of a neutral point particle

by a non-extremal black hole. Bekenstein pointed out that the limit of a point particle

is not a legal one in quantum theory. Because, according to the Heisenberg’s uncertainty

principle, the particle cannot be both at the horizon and at a turning point of its motion.

Considering a finite size of the particle - not smaller than the Compton wavelength - he

found a lower bound on the increase in the black hole surface area [2, 43]:

(∆A)min = 8πl2p (1.6)

where lp = (G~
c3

)1/2 is the Planck length (we use gravitational units in which G = c = 1).

The independence of the black hole parameters in the lower bound shows its universality

and hence it is a strong evidence in favor of a uniformly spaced area spectrum for a

quantum black holes.

These ideas led to a new research direction; namely the derivation of the area and

thus the entropy spectrum of black holes utilizing the quasinormal modes (QNM) of black

holes [44]. According to this method, since QNM frequencies are the characteristic of the

black hole itself, the latter must have an adiabatic invariant quantity. Its form is given

by energy of the black hole divided by this frequency, as happens in classical mechanics.

Hod showed for Schwarzschild black hole that if one considers the real part of the QNM

frequency only, then this adiabatic invariant quantity is actually related to area of the

black hole horizon. Now use of Bohr-Sommerfield quantization rule gives the spectrum

for the area which is equispaced. Then by the well known Bekenstein-Hawking area law,

the entropy spectrum is obtained. In this case the spacing of this entropy spectrum is

given by ∆Sbh = ln 3. Another significant attempt was to fix the Immirzi parameter

in the framework of Loop Quantum Gravity [45] but it was unsuccessful [46]. Later on

Kunstatter [47] gave an explicit form of the adiabatic invariant quantity for the black

hole:

Iadiab =

∫
dW

∆f(W )
, ∆f = fn+1 − fn (1.7)
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where ‘W ’ and ‘f ’ are the energy and the frequency of the QNM respectively. The

Borh-Sommerfield quantization rule is given by,

Iadiab = n~ (1.8)

which is valid for semi-classical (large n) limit. For the real part of the frequency of QNM,

(1.7) can be shown to be related to black hole entropy which, ultimately by (1.8), yields

the entropy spectrum. For Schwarzschild black hole it yields the same spacing as obtained

by Hod [44]. This, however, disagrees with Bekenstein’s result, ∆Sbh = 2π [2]. In a recent

work [48], Maggiore told that a black hole behaves like a damped harmonic oscillator

whose frequency is given by f = (f 2
R + f 2

I )
1
2 , where fR and fI are the real and imaginary

parts of the frequency of the QNM. In the large n limit fI >> fR. Consequently one has

to use fI rather than fR in the adiabatic quantity (1.7). It then leads to Bekenstein’s

result. With this new interpretation, entropy spectrum for the most general black hole

has been calculated in [49], which leads to an identical conclusion. In addition, it has

been tested that the entropy spectrum is equidistance even for more general gravity

theory (e.g. Einstein-Gauss-Bonnet theory), but that of area is not alaways equispaced,

particularly, if the entropy is not proportional to area [50]. In this sense quantization of

entropy is more fundamental than that of area.

A universal feature for black hole solutions, in a wide class of theories, is that the

notions of entropy and temperature can be attributed to them [2, 4, 3, 51]. Also, of all

forces of nature gravity is clearly the most universal. Gravity influences and is influenced

by everything that carries an energy, and is intimately connected with the structure of

space-time. The universal nature of gravity is also demonstrated by the fact that its basic

equations closely resemble the laws of thermodynamics [3, 51, 52, 53]. So far, there has

not been a clear explanation for this resemblance. Gravity is also considerably harder

to combine with quantum mechanics than all the other forces. The quest for unification

of gravity with these other forces of nature, at a microscopic level, may therefore not be

the right approach. It is known to lead to many problems, paradoxes and puzzles. Many

physicists believe that gravity and space-time geometry are emergent. Also string theory

and its related developments have given several indications in this direction. Particularly

important clues come from the AdS/CFT correspondence. This correspondence leads to

a duality between theories that contain gravity and those that don’t. It therfore provides
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evidence for the fact that gravity can emerge from a microscopic description that doesn’t

know about its existence 6. The universality of gravity suggests that its emergence should

be understood from general principles that are independent of the specific details of the

underlying microscopic theory.

1.2 Outline of the thesis

This thesis, based on the work [55, 56, 57, 58, 59, 60, 61, 62], is focussed towards the

applications of field theory, classical as well as quantum, to study black holes – mainly

the Hawking effect. This is discussed by the quantum tunneling mechanism. Here we

give a general frame work of the existing tunneling mechanism, both the radial null

geodesic and Hamilton – Jacobi methods. On the radial null geodesic method side, we

study the modifications to the tunneling rate, Hawking temperature and the Bekenstein-

Hawking area law by including the back reaction as well as non-commutative effects in

the space-time.

A major part of the thesis is devoted to the different aspects of the Hamilton-Jacobi

(HJ) method. A reformulation of this method is first introduced. Based on this, a close

connection between the quantum tunneling and the gravitational anomaly mechanisms to

discuss Hawking effect, is put forwarded. An interesting advantage of this reformulated

HJ method is that one can get directly the emission spectrum from the event horizon of

the black hole, which was missing in the earlier literature. Also, the quantization of the

entropy and area of a black hole is discussed in this method.

Another part of the thesis is the introduction of a new type of global embedding of

curved space-time to higher dimensional Minkowskian space-time (GEMS). Using this

a unified description of the Hawking and Unruh effects is given. Advantage of this

approach is, it simplifies as well as generalises the conventional embedding. In addition

to the spherically symmetric space-times, the Kerr-Newman black hole is exemplified.

Finally, following the above ideas and the definition of partition function for gravity,

it is shown that extremization of entropy leads to the Einstein’s equations of motion.

6Such a prediction was first given long ago by Sakharov [54].
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In this frame work, a relation between the entropy, energy and the temperature of a

black hole is given where energy is shown to be the Komar expression. Interestingly, this

relation is the generalized Smarr formula. In this analysis, the GEMS method provides

the law of equipartition of energy as an intermediate step.

The whole thesis is consists of 9 - chapters, including this introductory part. Chapter

wise summary is given below.

Chapter -2: The tunneling mechanism:

In this chapter, we present a general framework of tunneling mechanism within the

semi-classical approximation. The black hole is considered to be a general static, spheri-

cally symmetric one. First, the HJ method is discussed both in Schwarzschild like coordi-

nates and Painleve coordinates. Then a general methodology of the radial null geodesic

method is presented. Here the tunneling rate, which is related to the imaginary part of

the action, is shown to be equal to the exponential of the entropy change of the black

hole. In both the methods, a general expression for Hawking temperature is obtained,

which ultimately reduces to the Hawking expression (1.3). Finally, using this general

expression, calculation of Hawking temperature for some particular black hole metrics,

is explicitly done.

Chapter -3: Null geodesic approach:

In this chapter, we provide an application of the general frame work, discussed in the

previous chapter, for the radial null geodesic method, to incorporate back reaction as well

as noncommutative effects in the space-time. Here the main motivation is to find their

effects on the thermodynamic quantities. First, starting from a modified surface gravity of

a black hole due to one loop back reaction effect, the tunneling rate is obtained. From this,

the temperature and the area law are derived. The semi-classical Hawking temperature

is altered. Interestingly, the leading order correction to the area law is logarithmic of the

horizon area of the black hole while the non-leading corrections are the inverse powers of

the area. The coefficient of the logarithmic term is related to the trace anomaly. Similar

type of corrections were also obtained earlier [63, 64, 65, 66, 67, 68, 69, 70, 71] by different

methods.
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Next, we shall apply our general formulation to discuss various thermodynamic prop-

erties of a black hole defined in a noncommutative Schwarzschild space time where back

reaction is also taken into account. In particular, we are interested in the black hole

temperature when the radius is very small. Such a study is relevant because noncommu-

tativity is supposed to remove the so called “information paradox” where for a standard

black hole, temperature diverges as the radius shrinks to zero. The Hawking temperature

is obtained in a closed form that includes corrections due to noncommutativity and back

reaction. These corrections are such that, in some examples, the “information paradox”

is avoided. Expressions for the entropy and tunneling rate are also found for the leading

order in the noncommutative parameter. Furthermore, in the absence of back reaction,

we show that the entropy and area are algebraically related in the same manner as occurs

in the standard Bekenstein-Hawking area law.

Chapter -4: Tunneling mechanism and anomaly:

Several existing methods to study Hawking effect yield similar results. The univer-

sality of this phenomenon naturally tempts us to find the underlying mechanism which

unifies the different approaches. Recently, two widely used approaches gravitational

anomaly method and quantum tunneling method can be described in a unified picture,

since these two have several similarities in their techniques. One of the most important

and crucial step in the tunneling approach (in both the methods) is that the tunneling of

the particle occurs radially and its a near horizon phenomenon. This enforces that only

the near horizon (t− r) sector of the original metric is relevant. Also, the ingoing mode

is completely trapped inside the horizon. Similar step is also invoked in the gravitational

(chiral) anomaly approach [10, 11, 12, 16]. Here, since near the event horizon the theory

is dominated by the two dimensional, (t− r) sector of the metric, and the ingoing mode

is trapped inside the horizon, the theory is chiral. Hence one should has the gravitational

anomaly in the quantum level. Therefore, one might thought that these two approaches

- quantum tunneling and anomaly methods - can be discussed in an unified picture.

We begin this exercise by introducing the chirality conditions on the modes and the

energy-momentum tensor in chapter-4. The Klein-Gordon equation under the effective

(t− r) sector of the original metric shows that the there exits a general solution which is

a linear combination of two solutions. One is left moving and function of only one null
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tortoise coordinate (v) while other is right moving which is function of the other null

tortoise coordinate (u). From this information it is easy to find the chirality conditions.

Then use of these conditions on the usual expressions for the anomaly in the non-chiral

theory in two dimensions leads to the chiral anomaly expression. Finally, following the

approach by Banerjee et al [16], it is easy to find the expression for the Hawking flux.

Another portion of this chapter is dedicated to show that the same chirality conditions

are enough to find the Hawking temperature in quantum tunneling method. First, the

Hamilton-Jacobi equations are obtained from these conditions, which are derived in the

usual analysis from the field equations. Then a reformulation of tunneling method is

given in which the trapping of the left mode is automatically satisfied. The right mode

tunnels through the horizon with a finite probability which is exactly the Boltzmann

factor. This immediately leads to the Hawking temperature. Thus, this analysis reflects

the crucial role of the chirality to give a unified description of both the approaches to

discuss Hawking effect.

Chapter -5: Black body spectrum from tunneling mechanism:

So far, in the tunneling mechanism only the Hawking temperature was obtained by

comparing the tunneling rate with the Boltzmann factor. The discussion of the emission

spectrum is absent and hence it is not clear whether this temperature really corresponds

to the emission spectrum from the black hole event horizon. This shortcoming is ad-

dressed in chapter -5. Following the modified tunneling approach, introduced in the

previous chapter, the reduced density matrix for the outgoing particles, as seen from

the asymptotic observer, is constructed. Then determination of the average number of

outgoing particles yields the Bose or Fermi distribution depending on the nature of the

particles produced inside the horizon. The distributions come out to be exactly similar

to those in the case of black body radiation. It is now easy to identify the temperature

corresponding to the emission spectrum. The temperature here we obtain is just the

Hawking expression. Thereby we provide a complete description of the Hawking effect in

the tunneling mechanism.

Chapter -6: Global embedding and Hawking - Unruh Effect:

After Hawking’s discovery, Unruh showed that an uniformly accelerated observer on
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the Minkowski space-time sees a thermal radiation from the Minkowski vacuum. Later

on, Levin and Deser gave a unified picture of these two effects by using the globally

embedding of the curved space-time in the higher dimensional Minkowski space-time.

Such an interesting analysis was done using the embedding of the full curved metric and

was confined within the spherically symmetric black hole space-time. The main difficulty

to discuss for more general space-times is the finding of the embeddings.

This issue is addressed in chapter - 6. Since, the thermodynamic quantities of a black

hole are determined by the horizon properties and near the horizon the effective theory is

dominated by the two dimensional (t−r) metric, it is sufficient to consider the embedding

of this two dimensional metric. Considering this fact, a new type of global embedding

of curved space-times in higher dimensional flat ones is introduced to present a unified

description of Hawking and Unruh effects. Our analysis simplifies as well as generalises

the conventional embedding approach.

Chapter -7: Quantum tunneling and black hole spectroscopy:

The entropy-area spectrum of a black hole has been a long-standing and challenging

problem. In chapter - 7, based on the modified tunneling mechanism, introduced in

the previous chapters, we obtain the entropy spectrum of a black hole. In Einstein’s

gravity, we show that both entropy and area spectrum are evenly spaced. But in more

general theories (like Einstein-Gauss-Bonnet gravity), although the entropy spectrum is

equispaced, the corresponding area spectrum is not. In this sense, quantization of entropy

is more fundamental than that of area.

Chapter -8: Statistical origin of gravity:

Based on the above conceptions and findings, we explore in chapter - 8 an intriguing

possibility that gravity can be thought as an emergent phenomenon. Starting from the

definition of entropy, used in statistical mechanics, we show that it is proportional to the

gravity action. For a stationary black hole this entropy is expressed as Sbh = E/2TH ,

where TH is the Hawking temperature and E is shown to be the Komar energy. This

relation is also compatible with the generalised Smarr formula for mass.

Chapter -9: Conclusions:



1.2. Outline of the thesis 15

Finally, in chapter-9 we present our conclusion and outlook.





Chapter 2

The tunneling mechanism

Classical general relativity gives the concept of black hole from which nothing can escape.

This picture was changed dramatically when Hawking [4, 5] incorporated the quantum

nature into this classical problem. In fact he showed that black hole radiates a spectrum

of particles which is quite analogous with a thermal black body radiation, popularly

known as Hawking effect. Thus Hawking radiation emerges as a nontrivial consequence

of combining gravity and quantum mechanics. People then started thinking that this may

give some insight towards quantum nature of gravity. Since the original derivation, based

on the calculation of Bogoliubov coefficients in the asymptotic states, was technically very

involved, several derivations of Hawking radiation were subsequently presented in the

literature to give fresh insights. For example, Path integral derivation [8], Trace anomaly

approach [9] and chiral (gravitational) anomaly approach [10, 11, 12, 16, 17, 18, 19], each

having its merits and demerits.

Interestingly, none of the existing approaches to study Hawking effect, however, cor-

responds directly to one of the heuristic pictures that visualises the source of radiation as

tunneling. This picture is similar to an electron-positron pair creation in a constant elec-

tric field. The idea is that pair production occurs inside the event horizon of a black hole.

One member of the pair corresponds to the ingoing mode and other member corresponds

to the outgoing mode. The outgoing mode is allowed to follow classically forbidden tra-

jectories, by starting just behind the horizon onward to infinity. So this mode travels

back in time, since the horizon is locally to the future of the external region. Unitarity

is not violated since physically it is possible to envisage the tunneling as the shrinking

17
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of the horizon forwarded in time rather than the particle travelling backward in time

[23]. The classical one particle action becomes complex and so the tunneling amplitude

is governed by the imaginary part of this action for the outgoing mode. However, the

action for the ingoing mode must be real, since classically a particle can fall behind the

horizon. Another essential fact is that tunneling occurs radially and it is a near horizon

phenomenon where the theory is driven by only the effective (t − r) metric [22]. Under

this circumstance the solution of a field equation corresponds to l = 0 mode which is

actually the s - wave. These are all important points of this mechanism as will be seen

later. The essence of tunneling based calculations is, thus, the computation of the imag-

inary part of the action for the process of s-wave emission across the horizon, which in

turn is related to the Boltzmann factor for the emission at the Hawking temperature.

Also, it reveals that the presence of the event horizon is necessary and the Hawking effect

is a completely quantum mechanical phenomenon, determined by properties of the event

horizon.

There are two different methods in the literature to calculate the imaginary part of

the action: one is by Parikh-Wilczek [23] - radial null geodesic method and another is

the Hamilton-Jacobi (HJ) method which was first used by Srinivasan et. al. [22]. Later,

many people [72, 73] used the radial null geodesic method as well as HJ method to find

out the Hawking temperature for different space-time metrics. Also, several issues and

aspects of these methods have been discussed extensively [74, 75, 76, 77, 78, 79, 80, 81,

82, 83, 84, 85, 86, 87, 88].

In this chapter, we will give a short review of both the HJ and radial null geodesic

methods. While most of the material is available in the rather extensive literature [22, 23,

24, 25, 26, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 91] on tunneling,

there are some new insights and clarifications. The organization of the chapter is the

following. First we will discuss the HJ method within a semi-classical approximation to

find the Hawking temperature both in Schwarzschild like coordinate system and Painleve

coordinate system. A general static, spherically symmetric black hole metric will be

considered. In the next section, the radial null geodesic method will be introduced.

A general derivation of the Hawking temperature of this black hole will be presented.

Both these expressions will be shown identical. Then using this obtained expression, the

Hawking temperature will be explicitly calculated for some known black hole metrics.
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Final section will be devoted for the concluding remarks.

2.1 Hamilton-Jacobi method

Usually, calculations of the Hawking temperature, based on the tunneling formalism, for

different black holes conform to the general formula TH = ~κ
2π

. This relation is normally

understood as a consequence of the mapping of the second law of black hole thermody-

namics dM = κ
8π
dA with dE = THdSbh, coupled with the Bekenstein-Hawking area law

Sbh = A
4~ .

Using the tunneling approach, we now present a derivation of TH = ~κ
2π

where neither

the second law of black hole thermodynamics nor the area law are required. In this sense

our analysis is general.

In this section we will briefly discuss about the HJ method [22] to find the temperature

of a black hole using the picture of Hawking radiation as quantum tunneling. The analysis

will be restricted to the semi-classical limit. Equivalent results are obtained by using

either the standard Schwarzschild like coordinates or other types, as for instance, the

Painleve ones. We discuss both cases in this section.

2.1.1 Schwarzschild like coordinate system

First, we consider a general class of static (i.e. invariant under time reversal as well as

stationary), spherically symmetric space-time of the form

ds2 = −f(r)dt2 +
dr2

g(r)
+ r2dΩ2 (2.1)

where the horizon r = rH is given by f(rH) = g(rH) = 0.

Let us consider a massless particle in the space-time (2.1) described by the massless

Klein-Gordon equation

− ~2

√
−g

∂µ[g
µν
√
−g∂ν ]φ = 0 . (2.2)

Since tunneling across the event horizon occurs radially, only the radial trajectories will be

considered here. Also, it is an near horizon phenomenon and so the theory is effectively
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dominated by the two dimensional (r − t) sector of the full metric. Here the modes

corresponds to angular quantum number l = 0, which is actually the s - wave [22, 10, 11].

In this regard, only the (r − t) sector of the metric (2.1) is important. Therefore under

this metric the Klein-Gordon equation reduces to

− 1√
f(r)g(r)

∂2
t φ+

1

2

(
f ′(r)

√
g(r)

f(r)
+ g′(r)

√
f(r)

g(r)

)
∂rφ+

√
f(r)g(r)∂2

rφ = 0 . (2.3)

The semi-classical wave function satisfying the above equation is obtained by making the

standard ansatz for φ which is

φ(r, t) = exp
[
− i

~
S(r, t)

]
, (2.4)

where S(r, t) is a function which will be expanded in powers of ~. Substituting into the

wave equation (2.3), we obtain

i√
f(r)g(r)

(∂S
∂t

)2

− i
√
f(r)g(r)

(∂S
∂r

)2

− ~√
f(r)g(r)

∂2S

∂t2
+ ~

√
f(r)g(r)

∂2S

∂r2

+
~
2

(∂f(r)

∂r

√
g(r)

f(r)
+
∂g(r)

∂r

√
f(r)

g(r)

)∂S
∂r

= 0 . (2.5)

Expanding S(r, t) in a powers of ~, we find,

S(r, t) = S0(r, t) + ~S1(r, t) + ~2S2(r, t) + ...........

= S0(r, t) +
∑
i

~iSi(r, t). (2.6)

where i = 1, 2, 3, ....... In this expansion the terms from O(~) onwards are treated as

quantum corrections over the semi-classical value S0. Here, as mentioned earlier, we will

restrict only upto the semi-classical limit, i.e. ~ → 0. The effects due to inclusion of

higher order terms are discussed in [55, 82, 83, 84, 85, 86, 87, 88] 1.

Substituting (2.6) in (2.5) and taking the semi-classical limit ~ → 0, we obtain the

following equation:

∂S0

∂t
= ±

√
f(r)g(r)

∂S0

∂r
. (2.7)

1For extensive literature on the discussion of the higher order terms see [92, 93]
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This is the usual semi-classical Hamilton-Jacobi equation [22]. Now, to obtain a solution

for S0(r, t), we will proceed in the following manner. Since the metric (2.1) is static it

has a time-like Killing vector. Thus we will look for a solution of (2.7) which behaves as

S0 = ωt+ S̃0(r), (2.8)

where ω is the conserved quantity corresponding to the time-like Killing vector. This

ultimately is identified as the energy of the particle as seen by an observer at infinity.

Substituting this in (2.7) and then integrating we obtain,

S̃0(r) = ±ω
∫

dr√
f(r)g(r)

(2.9)

where the limits of the integration are chosen such that the particle just goes through the

horizon r = rH . So the one can take the range of integration from r = rH−ε to r = rH+ε,

where ε is a very small constant. The +(−) sign in front of the integral indicates that the

particle is ingoing (L) (outgoing (R)) (For elaborate discussion to determine the nature

of the modes, see Appendix 2.A). Using (2.9) in (2.8) we obtain

S0(r, t) = ωt± ω
∫

dr√
f(r)g(r)

. (2.10)

Therefore the ingoing and outgoing solutions of the Klein-Gordon equation (2.2) under

the back ground metric (2.1) is given by exploiting (2.4) and (2.10),

φ(L) = exp
[
− i

~

(
ωt+ ω

∫
dr√

f(r)g(r)

)]
(2.11)

and

φ(R) = exp
[
− i

~

(
ωt− ω

∫
dr√

f(r)g(r)

)]
. (2.12)

In the rest of the analysis we will call φ(L) as the left mode and φ(R) as the right mode.

A point we want to mention here that if one expresses the above modes in terms of

null coordinates (u, v), then φ(L) becomes function of “v” only while φ(R) becomes that

of “u”. These are call holomorphic modes. Such modes satisfies chirality condition. This

will be elaborated and used in the later discussions.
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Now for the tunneling of a particle across the horizon the nature of the coordinates

change. The time-like coordinate t outside the horizon changes to space-like coordinate

inside the horizon and likewise for the outside space-like coordinate r. This indicates that

‘t’ coordinate may have an imaginary part on crossing the horizon of the black hole and

correspondingly there will be a temporal contribution to the probabilities for the ingoing

and outgoing particles along with the spacial part. This has similarity with [78] where

they show for the Schwarzschild metric that two patches across the horizon are connected

by a discrete imaginary amount of time.

The ingoing and outgoing probabilities of the particle are, therefore, given by,

P (L) = |φ(L)|2 = exp
[2

~
(ωIm t+ ωIm

∫
dr√

f(r)g(r)

)]
(2.13)

and

P (R) = |φ(R)|2 = exp
[2

~

(
ωIm t− ωIm

∫
dr√

f(r)g(r)

)]
(2.14)

Now the ingoing probability P (L) has to be unity in the classical limit (i.e. ~→ 0) - when

there is no reflection and everything is absorbed - instead of zero or infinity [89].Thus, in

the classical limit, (2.13) leads to,

Im t = −Im

∫
dr√

f(r)g(r)
. (2.15)

It must be noted that the above relation satisfies the classical condition ∂S0

∂ω
= constant.

This is understood by the following argument. Calculating the left side of this condition

from (2.10) we obtain,

t = constant∓
∫

dr√
f(r)g(r)

(2.16)

where −(+) sign indicates that the particle is ingoing (L) (outgoing (R)). So for an

ingoing particle this condition immediately yields (2.15) considering that “constant” is

always real. On the other hand a naive substitution of ‘Im t’ in (2.14) from (2.16) for

the outgoing particle gives P (R) = 1. But it must be noted that according to classical

general theory of relativity, a particle can be absorbed in the black hole, while the reverse

process is forbidden. In this regard, ingoing classical trajectory exists while the outgoing
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classical trajectory is forbidden. Hence use of the classical condition for outgoing particle

is meaningless.

Now to find out ‘Im t’ for the outgoing particle we will take the help of the Kruskal

coordinates which are well behaved throughout the space-time. The Kruskal time (T ) and

space (X) coordinates inside and outside the horizon are defined in terms of Schwarzschild

coordinates as [94]

Tin = eκr
∗
in cosh(κtin) ; Xin = eκr

∗
in sinh(κtin) (2.17)

Tout = eκr
∗
out sinh(κtout) ; Xout = eκr

∗
out cosh(κtout) (2.18)

where κ is the surface gravity defined by

κ =
1

2

√
f ′(rH)g′(rH) . (2.19)

Here ‘in(out)’ stands for inside (outside) the event horizon while r∗ is the tortoise coor-

dinate, defined by

r∗ =

∫
dr√

f(r)g(r)
. (2.20)

These two sets of coordinates are connected through the following relations

tin = tout − i
π

2κ
(2.21)

r∗in = r∗out + i
π

2κ
(2.22)

so that the Kruskal coordinates get identified as Tin = Tout andXin = Xout. This indicates

that when a particle travels from inside to outside the horizon, ‘t’ coordinate picks up an

imaginary term − π
2κ

. This fact will be used elaborately in later chapters. Below we shall

show that this is precisely given by (2.15). Near the horizon one can expand f(r) and

g(r) about the horizon rH :

f(r) = f ′(rH)(r − rH) +O((r − rH)2)

g(r) = g′(rH)(r − rH) +O((r − rH)2) . (2.23)

Substituting these in (2.15) and using (2.19) we obtain,

Im t = − 1

2κ
Im

∫ rH+ε

rH−ε

dr

r − rH
. (2.24)
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Here we explicitly mentioned the integration limits. Now to evaluate the above integration

we make a substitution r − rH = εeiθ where θ runs from π to 2π. Hence,

Im t = − 1

2κ
Im

∫ 2π

π

idθ = − π

2κ
. (2.25)

For the Schwarzschild space-time, since κ = 1
4M

, one can easily show that Im t = −2πM

which is precisely the value given in [78].

Therefore, substituting (2.15) in (2.14), the probability of the outgoing particle is

P (R) = exp
[
− 4

~
ωIm

∫
dr√

f(r)g(r)

]
. (2.26)

Now using the principle of “detailed balance” [22]

P (R) = exp
(
− ω

TH

)
P (L) = exp

(
− ω

TH

)
, (2.27)

we obtain the temperature of the black hole as

TH =
~
4

(
Im

∫
dr√

f(r)g(r)

)−1

. (2.28)

This is the standard semi-classical Hawking temperature of the black hole. Using this

expression and knowing the metric coefficients f(r) and g(r) one can easily find out the

temperature of the corresponding black hole.

Some comments are now in order. The first point is that (2.28) yields a novel form

of the semi-classical Hawking temperature. For instance, it can be used for metrics that

need not be spherically symmetric. Later this will be exemplified in the case of the Kerr

metric. For a spherically symmetric metric it is possible to show that (2.28) reproduces

the familiar form

TH =
~κ
2π

. (2.29)

This can be done in the following way. The near horizon expansions for f(r) and g(r)

are given by (2.23). Inserting these in (2.28) and performing the contour integration, as

done earlier, (2.29) is obtained. Note that this form is the standard Hawking temperature

found [90, 91] by the Hamilton-Jacobi method. There is no ambiguity regarding a factor
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of two in the Hawking temperature as reported in the literature [90, 91]. This issue is

completely avoided in the present analysis where the standard expression for the Hawking

temperature is reproduced.

The other point is that the form of the solution (2.8) of (2.7) is not unique, since

any constant multiple of ‘S0’ can be a solution as well. For that case one can easily see

that the final expression (2.28) for the temperature still remains unchanged. It is only a

matter of rescaling the particle energy ‘ω’. This shows the uniqueness of the expression

(2.28) for the Hawking temperature.

2.1.2 Painleve coordinate system

Here we will discuss the Hamilton-Jacobi method in Painleve coordinates and explicitly

show how one can obtain the standard Hawking temperature. Consider a metric of the

form (2.1), which describes a general class of static, spherically symmetric space time.

There is a coordinate singularity in this metric at the horizon r = rH where f(rH) =

g(rH) = 0. This singularity is avoided by the use of Painleve coordinate transformation

[95],

dt→ dt−

√
1− g(r)
f(r)g(r)

dr . (2.30)

Under this transformation, the metric (2.1) takes the following form,

ds2 = −f(r)dt2 + 2f(r)

√
1− g(r)
f(r)g(r)

dtdr + dr2 + r2dΩ2. (2.31)

Note that the metric (2.1) looks both stationary and static, whereas the transformed

metric (2.31) is stationary but not static which reflects the correct nature of the space

time.

As before, consider a massless scalar particle in the spacetime metric (2.31) described

by the Painleve coordinates. Since the Klein-Gordon equation (2.2) is in covariant form,

the scalar particle in the background metric (2.31) also satisfies (2.2). Therefore under
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this metric the Klein-Gordon equation reduces to

− (
g

f
)

3
2∂2

t φ+
2g
√

1− g
f

∂t∂rφ−
gg′

2f
√

1− g
∂tφ+ g

√
g

f
∂2
rφ

+
1

2

√
g

f
(3g′ − f ′g

f
)∂rφ = 0. (2.32)

As before, substituting the standard ansatz (2.4) for φ in the above equation, we obtain,

−(
g

f
)

3
2

[
− i

~

(∂S
∂t

)2

+
∂2S

∂t2

]
+

2g
√

1− g
f

[
− i

~
∂S

∂t

∂S

∂r
+
∂2S

∂r∂t

]
− gg′

2f
√

1− g
∂S

∂t

+g

√
g

f

[
− i

~

(∂S
∂r

)2

+
∂2S

∂r2

]
+

1

2
(3g′ − f ′g

f
)
∂S

∂r
= 0. (2.33)

Substituting (2.6) in the above and then neglecting the terms of order ~ and greater we

find to the lowest order,

(
g

f
)

3
2

(∂S0

∂t

)2

− 2g
√

1− g
f

∂S0

∂t

∂S0

∂r
− g

√
g

f

(∂S0

∂r

)2

= 0. (2.34)

It has been stated earlier that the metric (2.31) is stationary. Therefore following the

same argument as before it has a solution of the form (2.8). Inserting this in (2.34) yields,

dS̃0(r)

dr
= ω

√
1− g(r)
f(r)g(r)

(
− 1± 1√

1− g(r)

)
(2.35)

Integrating,

S̃0(r) = ω

∫ √
1− g(r)
f(r)g(r)

(
− 1± 1√

1− g(r)

)
dr. (2.36)

The +(−) sign in front of the integral indicates that the particle is ingoing (outgoing).

Therefore the actions for ingoing and outgoing particles are

S
(L)
0 (r, t) = ωt+ ω

∫
1−
√

1− g√
fg

dr (2.37)

and

S
(R)
0 (r, t) = ωt− ω

∫
1 +
√

1− g√
fg

dr (2.38)
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Since in the classical limit (i.e. ~→ 0) the probability for the ingoing particle (P (L)) has

to be unity, S
(L)
0 must be real. Following identical steps employed in deriving (2.15) we

obtain, starting from (2.37), the analogous condition,

Im t = −Im

∫
1−
√

1− g√
fg

dr (2.39)

Substituting this in (2.38) we obtain the action for the outgoing particle:

S
(R)
0 (r, t) = ωRe t− ωRe

∫
1 +
√

1− g√
fg

dr − 2iωIm

∫
dr√
fg

(2.40)

Therefore the probability for the outgoing particle is

P (R) = |e−
i
~S

(R)
0 |2 = e

− 4
~ωIm

R
dr√

f(r)g(r) (2.41)

Now using the principle of “detailed balance” (2.27) we obtain the same expression (2.28)

for the standard Hawking temperature which was calculated in Schwarzschild like coor-

dinates by the Hamilton-Jacobi method.

2.2 Radial null geodesic method

So far, we gave a general discussion on the HJ method both in Scwarzschild like coor-

dinates as well as Painleve coordinates and obtained the expression of the temperature

for a static, spherically symmetric black hole. Also, this has been reduced to the famous

Hawking expression - temperature is proportional to the surface gravity.

In this section, we will give a general discussion on the radial null geodesic method.

A derivation of the Hawking temperature by this method will be explicitly performed for

the metric (2.1).

In this method, the first step is to find the radial null geodesic. To do that it is

necessary to remove the apparent singularity at the event horizon. This is done by going

to the Painleve coordinates. In these coordinates, the metric (2.1) takes the form (2.31).

Then the radial null geodesics are obtained by setting ds2 = dΩ2 = 0 in (2.31),

ṙ ≡ dr

dt
=

√
f(r)

g(r)

(
± 1−

√
1− g(r)

)
(2.42)
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where the positive (negative) sign gives outgoing (incoming) radial geodesics. At the

neighbourhood of the black hole horizon, the trajectory (2.42) of an outgoing shell is

written as,

ṙ =
1

2

√
f ′(rH)g′(rH)(r − rH) +O((r − rH)2) (2.43)

where we have used the expansions (2.23) of the functions f(r) and g(r). Now we want to

write (2.43) in terms of the surface gravity of the black hole. The reason is that in some

cases, for example in the presence of back reaction, one may not know the exact form of

the metric but what one usually knows is the surface gravity of the problem. Also, the

Hawking temperature is eventually expressed in terms of the surface gravity. The form

of surface gravity for the transformed metric (2.31) at the horizon is given by,

κ = Γ0
00|r=rH =

1

2

[√ 1− g(r)
f(r)g(r)

g(r)
df(r)

dr

]
|r=rH . (2.44)

Using the Taylor series (2.23), the above equation reduces to the familiar form of surface

gravity (2.19). This expression of surface gravity is used to write (2.43) in the form,

ṙ = κ(r − rH) +O((r − rH)2). (2.45)

We consider a positive energy shell which crosses the horizon in the outward direction

from rin to rout. The imaginary part of the action for that shell is given by [23],

Im S = Im

∫ rout

rin

prdr = Im

∫ rout

rin

∫ pr

0

dp′rdr. (2.46)

Using the Hamilton’s equation of motion ṙ = dH
dpr
|r the last equality of the above equation

is written as,

Im S = Im

∫ rout

rin

∫ H

0

dH ′

ṙ
dr (2.47)

where, instead of momentum, energy is used as the variable of integration.

Now we consider the self gravitation effect [27] of the particle itself, for which (2.45)

and (2.47) will be modified. Following [23], under the s- wave approximation, we make

the replacement M →M − ω in (2.45) to get the following expression

ṙ = (r − rH)κ[M − ω] (2.48)
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where ω is the energy of a shell moving along the geodesic of space-time 2.

Now we use the fact [23], for a black hole of mass M , the Hamiltonian H = M − ω.

Inserting in (2.47) the modified expression due to the self gravitation effect is obtained

as,

Im S = Im

∫ rout

rin

∫ M−ω

M

d(M − ω′)
ṙ

dr = −Im

∫ rout

rin

∫ ω

0

dω′

ṙ
dr (2.49)

where in the final step we have changed the integration variable from H ′ to ω′. Substi-

tuting the expression of ṙ from (2.48) into (2.49) we find,

Im S = −Im

∫ ω

0

dω′

κ[M − ω′]

∫ rout

rin

dr

r − rH
. (2.50)

The r-integration is done by deforming the contour. Ensuring that the positive energy

solutions decay in time (i.e. into the lower half of ω′ plane and rin > rout) we have after

r integration3,

Im S = π

∫ ω

0

dω′

κ[M − ω′]
. (2.51)

To understand the ordering rin > rout - which supplies the correct sign, let us do the

following analysis. For simplicity, we consider the Schwarzschild black hole whose sur-

face gravity is given by κ[M ] = 1
4M

. Substituting this in (2.51) and performing the ω′

integration we obtain

Im S = 4πω(M − ω

2
). (2.52)

Now let us first perform the ω′ integration before r integration in (2.50). For Schwarzschild

black hole this will give

Im S = 4 Im

∫ rout

rin

dr

∫ M−ω

M

M ′

r − 2M ′dM
′ (2.53)

2Here κ[M −ω] represents that κ is a function of (M −ω). This symbol will be used in the later part

of the chapter for a similar purpose.

3One can also take the contour in the upper half plane with the replacement M →M + ω [27].
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where substitution of M ′ = M − ω′ has been used. Evaluation of M ′ integration and

then r integration in the above yields,

Im S =
π

2
(r2

in − r2
out) (2.54)

Hence (2.52) and (2.54) to be equal we must have rin = 2M and rout = 2(M − ω), which

clearly shows that rin > rout.

The tunneling amplitude following from the WKB approximation is given by,

Γ ∼ e−
2
~ Im S = e∆Sbh (2.55)

where the result is expressed more naturally in terms of the black hole entropy change

[23]. To understand the last identification (Γ = e∆Sbh), consider a process where a black

hole emits a shell of energy. We denote the initial state and final state by the levels i and

f . In thermal equilibrium,

dPi
dt

= PiPi→f − PfPf→i = 0 (2.56)

where Pa denotes the probability of getting the system in the macrostate a(a = i, f) and

Pa→b denotes the transition probability from the state a to b (a, b = i, f). According

to statistical mechanics, the entropy of a given state (specified by its macrostates) is a

logarithmic function of the total number of microstates (Sbh = logΩ). So the number of

microstates Ω for a given black hole is eSbh . Since the probability of getting a system in

a particular macrostate is proportional to the number of microstates available for that

configuration, we get from (2.56),

eSiPemission = eSfPabsorption (2.57)

where Pemission is the emission probability Pi→f and Pabsorption is the absorption probability

Pf→i. So the tunneling amplitude is given by,

Γ =
Pemission

Pabsorption

= eSf−Si = e∆Sbh (2.58)

thereby leading to the correspondence,

∆Sbh = −2

~
Im S (2.59)
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that follows from (2.55). We mention that the above relation (2.59) has also been shown

using semi-classical arguments based on the second law of thermodynamics [96] or on the

assumption of entropy being proportional to area [29, 97]. But such arguments are not

used in our derivation. Rather our analysis has some points of similarity with the physical

picture suggested in [23] leading to a general validity of (2.58). This implies that when

quantum effects are taken into consideration, both sides of (2.59) are modified keeping

the functional relationship identical. In our analysis we will show that self consistency is

preserved by (2.59).

In order to write the black hole entropy in terms of its mass alone we have to substitute

the value of ω in terms of M for which the black hole is stable i. e.

d(∆Sbh)

dω
= 0 . (2.60)

Using (2.51) and (2.59) in the above equation we get,

1

κ[M − ω]
= 0 . (2.61)

The roots of this equation are written in the form

ω = ψ[M ] (2.62)

which means

1

κ[M − ψ[M ]]
= 0. (2.63)

This value of ω from eq. (2.62) is substituted back in the expression of ∆Sbh to yield,

∆Sbh = −2π

~

∫ ψ[M ]

0

dω′

κ[M − ω′]
. (2.64)

Having obtained the form of entropy change, we are now able to give an expression of

entropy for a particular state. We recall the simple definition of entropy change

∆Sbh = Sfinal − Sinitial . (2.65)
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Now setting the black hole entropy at the final state to be zero we get the expression of

entropy as

Sbh = Sinitial = −∆Sbh =
2π

~

∫ ψ[M ]

0

dω′

κ[M − ω′]
. (2.66)

From the law of thermodynamics, we write the inverse black hole temperature as,

1

TH
=

dSbh
dM

(2.67)

=
2π

~
d

dM

∫ ψ[M ]

0

dω′

κ[M − ω′]
. (2.68)

Using the identity,

dF [x]

dx
= f [x, b[x]]b′[x]− f [x, a[x]]a′[x] +

∫ b[x]

a[x]

∂

∂x
f [x, t]dt (2.69)

for,

F [x] =

∫ b[x]

a[x]

f [x, t]dt (2.70)

we find,

1

TH
=

2π

~
[ 1

κ[M − ψ[M ]]
ψ′[M ]−

∫ ψ[M ]

0

1

[κ[M − ω′]]2
∂κ[M − ω′]
∂(M − ω′)

dω′
]
. (2.71)

Making the change of variable x = M − ω′ in the second integral we obtain,

1

TH
=

2π

~
[ ψ′[M ]− 1

κ[M − ψ[M ]]
+

1

κ[M ]

]
. (2.72)

Finally, making use of (2.63), the cherished expression (2.29) for the Hawking temperature

follows.

For a consistency check, consider the second law of thermodynamics which is now

written as,

dM = dω′ = ThdSbh =
~κ[M ]

2π
dSbh . (2.73)

Inserting in (2.51), yields,

Im S =
~
2

∫ Sbh[M−ω]

Sbh[M ]

dSbh = −~
2
∆Sbh (2.74)

thereby reproducing (2.59). This shows the internal consistency of the tunneling ap-

proach.
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2.3 Calculation of Hawking temperature

In this section we will consider some standard metrics to show how the semi-classical

Hawking temperature can be calculated from (2.28). For instance we consider a spher-

ically symmetric space-time, the Schwarzschild metric and a non-spherically symmetric

space-time, the Kerr metric.

2.3.1 Schwarzschild black hole

The spacetime metric is given by

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2dΩ2. (2.75)

So the metric coefficients are

f(r) = g(r) = (1− rH
r

); rH = 2M. (2.76)

Since this metric is spherically symmetric we use the formula (2.28) to compute the

semi-classical Hawking temperature. This is found to be,

TH =
~

4πrH
=

~
8πM

. (2.77)

which is the standard expression (2.29) where the surface gravity, calculated by (2.19),

is κ = 1/4M .

2.3.2 Kerr black hole

This example provides a nontrivial application of our formula (2.28) for computing the

semi-classical Hawking temperature. Here the metric is not spherically symmetric, inval-

idating the use of (2.29).

In Boyer-Linquist coordinates the form of the Kerr metric is given by

ds2 = −
(
1− 2Mr

ρ2

)
dt2 − 2Mar sin2θ

ρ2
(dtdφ+ dφdt)

+
ρ2

∆
dr2 + ρ2dθ2 +

sin2θ

ρ2

[
(r2 + a2)2 − a2∆ sin2θ

]
dφ2 (2.78)
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where

∆(r) = r2 − 2Mr + a2; ρ2(r, θ) = r2 + a2 cos2θ

a =
J

M
(2.79)

and J is the Komar angular momentum. We have chosen the coordinates for Kerr metric

such that the event horizons occur at those fixed values of r for which grr = ∆
ρ2

= 0.

Therefore the event horizons are

r± = M ±
√
M2 − a2. (2.80)

This metric is not spherically symmetric and static but stationary. So it must have time-

like Killing vectors. Although in our general formulation we consider only the static,

spherically symmetric metrics, it is still possible to apply this methodology for such a

metric. The point is that for radial trajectories, the Kerr metric simplifies to the following

form

ds2 = −
(r2 + a2 − 2Mr

r2 + a2

)
dt2 +

( r2 + a2

r2 + a2 − 2Mr

)
dr2 (2.81)

where, for simplicity, we have taken θ = 0 (i.e. particle is going along z-axis). This is

exactly the form of the (r − t) sector of the metric (2.1). Since in our formalism only

the (r− t) sector is important, our results are applicable here. In particular if the metric

has no terms like (drdt) then we can apply (2.28) to find the semi-classical Hawking

temperature. Here,

f(r) = g(r) =
(r2 + a2 − 2Mr

r2 + a2

)
(2.82)

Substituting these in (2.28) we obtain,

TH =
~
4

(
Im

∫
r2 + a2

(r − r+)(r − r−)

)−1

. (2.83)

The integrand has simple poles at r = r+ and r = r−. Since we are interested only with

the event horizon at r = r+, we choose the contour as a small half-loop going around this

pole from left to right. Integrating, we obtain the value of the semi-classical Hawking

temperature as

TH =
~
4π

r+ − r−
r2
+ + a2

. (2.84)

which is the result quoted in the literature [98]. This can also be expressed in standard

expression (2.29) where κ = r+−r−
2(r2++a2)

.
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2.4 Discussions

In this chapter, we introduced the tunneling method to study the Hawking effect within

the semi-classical limit (i.e. ~ → 0), particularly to find the familiar form of the semi-

classical Hawking temperature. There exist two approaches: Hamilton-Jacobi method

[22] (HJ) and radial null geodesic method [23]. For simplicity, a general form of the

static, spherically symmetric black hole metric was considered.

First, discussions on HJ method in both the Schwarzschild like coordinates and

Painleve coordinates have been done. In both coordinate systems, we obtained iden-

tical results. A general expression (2.28) for the semi-classical Hawking temperature

was obtained. For the particular case of a spherically symmetric metric, our expression

reduces to the standard form (2.29). The factor of two problem in the Hawking temper-

ature has been taken care of by considering the contribution from the imaginary part of

the temporal coordinate since it changes its nature across the horizon. Also, this method

is free of the rather ad hoc way of introducing an integration constant, as reported in

[89]. Our approach, on the other hand, is similar in spirit to [78] where it has been

shown that ‘t’ changes by an imaginary discrete amount across the horizon. Indeed, the

explicit expression for this change, in the case of Schwarzschild metric, calculated from

our general formula (2.15), agrees with the findings of [78]. Then, a general discussion

on the other method, the radial null geodesic method, was given. In this method, again

the standard form of the Hawking temperature was obtained. Finally, as an applica-

tion, we calculated the semi-classical temperature of the Schwarzschild black hole from

the general expression (2.28). Also, use of this expression to find the temperature of a

non-spherically symmetric metric, for instance Kerr metric, has been shown.

As a final remark, we want to mention that our derivation of Hawking temperature

in terms of the surface gravity by considering the action of an outgoing particle crossing

the black hole horizon due to quantum mechanical tunneling is completely general. The

expression of temperature was known long before [99, 3, 2, 43] from a comparison between

two classical laws. One is the law of black hole thermodynamics which states that the

mass change is proportional to the change of horizon area multiplied by surface gravity

at the horizon. The other is the area law according to which the black hole entropy is

proportional to the surface area of the horizon. The important point of our derivation
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is that it is not based on either of these two classical laws. The only assumption is that

the metric is static and spherically symmetric. Hence it is useful to apply this method to

study the Hawking effect for the black holes which incorporates both the back reaction

and noncommutative effects but still are in static, spherically symmetric form. This will

be done in the next chapter.



Appendix

2.A Ingoing and outgoing modes

Our convention is such that, a mode will be called ingoing (outgoing) if its radial momen-

tum eigenvalue is negative (positive). For a wave function φ, the momentum eigenvalue

equation is

p̂rφ = prφ, (2a.1)

where p̂r = −i~ ∂
∂r

. So according to our convention, if pr < 0 for a mode, then it is ingoing

and vice versa.

Now the mode solutions are given by (2.11) and (2.12). So according to (2a.1), the

momentum eigenvalue for φ(L) is p
(L)
r = − ω√

fg
which is negative. So this mode is ingoing.

Similarly, the momentum eigenvalue for φ(R) mode comes out to be positive and hence it

is a outgoing mode.
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Null geodesic approach

In the previous chapter, a systematic analysis on tunneling mechanism, both by HJ

and radial null geodesic methods, to find the Hawking temperature has been presented.

The temperature was found to be proportional to the surface gravity of a black hole

represented by a general static, spherically symmetric metric. This indicates that such

an analysis can be extended to the cases in which the space-time metric is modified

by effects like back reaction and noncommutivity, provided these are still in the static,

spherically symmetric form.

To investigate the last stage evolution of black hole evaporation back reaction in space-

time has a significant influence. An approach to this problem is to solve the semiclassical

Einstein equations in which the matter fields including the graviton, are quantized at

the one-loop level and coupled to (c -number) gravity through Einstein’s equation. The

space-time geometry gµν , generates a non-zero vacuum expectation value of the energy-

momentum tensor (< Tµν >) which in turn acts as a source of curvature (this is the so-

called ”back-reaction problem”). With this energy momentum tensor and an ansatz for

the metric, the solutions of Einstein’s equation yields the metric solution, which is static

and spherically symmetric [63]. Using the conformal anomaly method the modifications to

the space-time metric by the one loop back reaction was computed [100, 63]. Later it was

shown [64, 65] that the Bekenstein-Hawking area law was modified, in the leading order,

by logarithmic corrections. Similar conclusions were also obtained by using quantum

gravity techniques [66, 71, 101]. Likewise, corrections to the semi-classical Hawking

temperature were derived [67, 68, 69, 70].

39
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It is known that for the usual cases, the Hawking temperature diverges as the radius

of the event horizon decreases. This uncomfortable situation leads to the “information

paradox”. To avoid this one of the attempts is inclusion of the noncommutative effect

in the space-time. There exits two methods: (i) directly take the space-time as noncom-

mutative, [xµ, xν ] = iθµν and use Seibarg-Witten map to recast the gravitational theory

(in noncommutative space) in terms of the corresponding theory in usual (commutative

space) variables, and (ii) incorporate the effect of noncommutativity in the mass term of

the gravitating object.

In this chapter, we shall include the back reaction as well as noncommutative effects

in the space-time metric. Following the radial null geodesic method presented in the

previous chapter, the thermodynamic entities will be calculated. Although there have

been sporadic attempts in this direction [74, 75] a systematic, thorough and complete

analysis was lacking.

The organization of the chapter is as follows. In the first section, we compute the cor-

rections to the semi-classical tunneling rate by including the effects of self gravitation and

back reaction. The usual expression found in [23], given in the Maxwell-Boltzmann form

e
− ω

TH , is modified by a prefactor. This prefactor leads to a modified Bekenstein-Hawking

entropy. The semi-classical Bekenstein-Hawking area law connecting the entropy to the

horizon area is altered. As obtained in other approaches [64, 65, 66, 67, 68, 69, 70, 71],

the leading correction is found to be logarithmic while the nonleading one is a series in

inverse powers of the horizon area (or Bekenstein-Hawking entropy). We also compute

the appropriate modification to the Hawking temperature. Explicit results are given for

the Schwarzschild black hole.

Next, we shall apply our general formulation to discuss various thermodynamic prop-

erties of a black hole defined in a noncommutative Schwarzschild space time where

back reaction is also taken into account. A short introduction of the noncommutative

Schwarzschild black hole is presented at the beginning of the section (3.2). In particular

we are interested in the black hole temperature when the radius is of the order
√
θ, where

θ is the noncommutative parameter. Such a study is relevant because noncommutativity

is supposed to remove the so called information paradox where for a standard black hole,

temperature diverges as the radius shrinks to zero. The Hawking temperature is obtained
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in a closed form that includes corrections due to noncommutativity and back reaction.

These corrections are such that, in some examples, the information paradox is avoided.

Expressions for the entropy and tunneling rate are also found for the leading order in

the noncommutative parameter. Furthermore, in the absence of back reaction, we show

that the entropy and area are algebraically related in the same manner as occurs in the

standard Bekenstein-Hawking area law.

3.1 Back reaction effect

In this section we shall derive the modifications in the Hawking temperature and Bekenstein-

Hawking area law due to the one loop back reaction effect in the space-time. Back reaction

is essentially the effect of the Hawking radiation on the horizon. For simplicity, only the

Schwarzschild black hole will be considered. One way to include the back reaction effect

into the problem is to solve Einstein’s equation with an appropriate source. In this case

one considers the renormalized energy-momentum tensor due to one loop back reaction

effect on the right hand side of the Einstein’s equation. Then solution of this equation

gives the black hole metric given by the form (2.1) [63]. Therefore it is feasible to apply

the tunneling method developed in the previous chapter for this case to find the modifi-

cations to the usual thermodynamical entities. Here our discussions will be based on the

radial null geodesic method.

Here our starting point is the expression for the imaginary part of the action (2.51),

since in the present problem the form of the modified surface gravity of the black hole

is known. The modified surface gravity due to one loop back reaction effects is given by

[63],

κ[M ] = κ0[M ]
(
1 +

α

M2

)
(3.1)

where κ0 is the classical surface gravity at the horizon of the black hole. Such a form is

physically dictated by simple scaling arguments. As is well known, a loop expansion is

equivalent to an expansion in powers of the Planck constant ~. Therefore, the one loop

back reaction effect in the surface gravity is written as,

κ = κ0 + ξκ0 (3.2)
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where ξ is a dimensionless constant having magnitude of the order ~. Since, in natural

units G = c = kB = 1, Planck lenght lp = Planck mass Mp =
√

~ 1 and for Schwarzschild

black hole mass M is the only macroscopic parameter, ξ must have the following form

ξ = β
M2

p

M2
(3.3)

where β is a pure numerical factor. Taking α = βM2
p and then substituting (3.3) in (3.2)

we obtain (3.1). The constant β is related to the trace anomaly coefficient taking into

account the degrees of freedom of the fields [102, 63, 64]. Its explicit form is given by

[102, 64],

β =
1

360π

(
−N0 −

7

4
N 1

2
+ 13N1 +

233

4
N 3

2
− 212N2) (3.4)

where Ns denotes the number of fields with spin ‘s’.

For the classical Schwarzschild space-time the metric coefficients are given by (2.76)

and so by equation (2.19) the value of κ0[M ] is

κ0[M ] =
f ′(rH = 2M)

2
=

1

4M
. (3.5)

Substituting (3.1) with κ0 is given by (3.5) in (2.51) and then integrating over ω′ we have

Im S = 4πω(M − ω

2
) + 2πα ln

[(M − ω)2 + α

M2 + α

]
. (3.6)

Now according to the WKB-approximation method the tunneling probability is given by

(2.55). So the modified tunneling probability due to back reaction effects is,

Γ ∼
[
1−

2ω(M − ω
2
)

M2 + α

]− 4πα
~
e−

8πω
~ (M−ω

2
) (3.7)

The exponential factor of the tunneling probability was previously obtained by Parikh

and Wilczek [23]. The factor before the exponential is new. It is actually due the effect of

back reaction. It will eventually give the correction to the Bekenstein-Hawking entropy,

area law and the Hawking temperature as will be shown below.

1Planck length lp =
√

~G
c3 , Planck mass Mp =

√
~c
G
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It was shown in the previous chapter and also in the literature [23, 80, 96] that a

change in the Bekenstein-Hawking entropy due to the tunneling through the horizon is

related to Im S by the relation (2.59). Therefore the corrected change in Bekenstein-

Hawking entropy is

∆Sbh = −8πω

~
(M − ω

2
)− 4πα

~
ln

[
(M − ω)2 + α

]
+

4πα

~
ln(M2 + α) (3.8)

Next using the stability criterion d(∆Sbh)
dω

= 0 for the black hole, one obtains the following

condition

(ω −M)3 = 0 (3.9)

which gives the only solution as ω = M . Substituting this value of ω in (3.8) we will

have the change in entropy of the black hole from its initial state to final state:

Sfinal − Sinitial = −4πM2

~
+

4πα

~
ln (

M2

α
+ 1) . (3.10)

Setting Sfinal = 0, the Bekenstein-Hawking entropy of the black hole with mass M is

Sbh = Sinitial =
4πM2

~
− 4πβ ln (

M2

β~
+ 1) (3.11)

where we have substituted α = βM2
p = β~.

Now the area of the black hole horizon given by

A = 4πr2
H = 16πM2 . (3.12)

Putting (3.12) in (3.11) and expanding the logarithm, we obtain the final form,

Sbh =
A

4~
− 4πβ ln

A

4~
− 64π2~β2

[ 1

A
− 16π~β

2A2
+

(16π~β)2

3A3
− .....

]
+ const.(independent of A) . (3.13)

The first term is the usual semi-classical area law [2, 5] and other terms are the correc-

tions due to the one loop back reaction effect. The leading correction is the well known

logarithmic correction [64, 65, 66, 67, 68, 69, 70, 71]. Quantum gravity calculations lead

to a prefactor −1
2

for the ln A
4~ term which would correspond to choosing β = 1

8π
. But
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here on the contrary β is given by (3.4). Also, the nonleading corrections are found to

be expressed as a series in inverse powers of A, exactly as happens in quantum gravity

inspired analysis [66, 71]. Now using the first law of black hole mechanics, THdSbh = dM ,

or the relation (2.29) between the Hawking temperature and surface gravity, we can find

the corrected form of the Hawking temperature TH due to back reaction. This is obtained

from (3.1) as,

TH = T0

(
1 +

β~
M2

)
(3.14)

where T0 = ~κ0

2π
= ~

8πM
is the semi-classical Hawking temperature and the other term is

the correction due to the back reaction. A similar expression was obtained previously in

[64] by the conformal anomaly method.

It is also possible to obtain the corrected Hawking temperature (3.14) in the stan-

dard tunneling method to leading order [23] where this temperature is read off from the

coefficient of ‘ω’ in the exponential of the probability amplitude (3.7). Recasting this

amplitude as,

Γ ∼ e
− 8πω

~ (M−ω
2
)− 4πα

~ ln(1− 2ω(M−ω
2 )

M2+α
)

(3.15)

and retaining terms upto leading order in ω, we obtain,

Γ ∼ e
− 8πMω

~ +4πβ( 2Mω
M2+β~ )

= e
−( 8πM3

~(M2+β~)
)ω

= e
− ω

TH . (3.16)

The inverse Hawking temperature, indentified with the coefficient of ‘ω’, reproduces

(3.14).

The above analysis showed how the effects of back reaction in the space-time can

be discussed in a general frame work of tunneling mechanism. The only assumption

was that the modified metric must be static, spherically symmetric. In particular, the

modifications to the temperature and entropy for the Schwarzschild case were explicitly

evaluated. The results agree with earlier findings by different methods. Next, we shall

discuss the noncommutative effect in addition to the back reaction effect in the space-time

using our general frame work.
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3.2 Inclusion of noncommutativity

Here we shall apply our previous formulations to find the modifications to the Hawking

temperature and Bekenstein-Hawking area law due to noncommutative as well as back re-

action effects. In the vanishing limit of noncommutative parameter, the results reduce to

those obtained in the previous section. First a short introduction on the noncommutative

Schwarzschild black hole will be given. Then the modifications to the thermodynamic

entities will be calculated.

3.2.1 Schwarzschild black hole in noncommutative space

The fact is that gravitation is a manifestation of the structure of spacetime as dictated

by the presence of gravitating objects. Therefore, inclusion of noncommutative effects

in gravity can be done in two ways. Directly take the spacetime as noncommutative,

[xµ, xν ] = iθµν and use the Seibarg-Witten map to recast the gravitational theory (in

noncommutative space) in terms of the corresponding theory in usual (commutative

space) variables. This leads to correction terms (involving powers of θµν) in the var-

ious expressions like the metric, Riemann tensor etc. This approach has been adopted in

[103, 104, 105, 106, 107] 2. Alternatively, incorporate the effect of noncommutativity in

the mass term of the gravitating object. Here the mass density, instead of being repre-

sented by a Dirac delta function, is replaced by a Gaussian distribution. This approach

has been adopted in [109, 110, 111, 112, 113, 114] 3. The two ways of incorporating non-

commutative effects in gravity are, in general, not equivalent. Here we follow the second

approach, for our investigation on the computation of thermodynamic entities and area

law for the noncommutative Schwarzschild black hole.

The usual definition of mass density in terms of the Dirac delta function in commuta-

tive space does not hold good in noncommutative space because of the position-position

uncertainty relation. In noncommutative space mass density is defined by replacing the

Dirac delta function by a Gaussian distribution of minimal width
√
θ in the following

2For a detailed discussions of this approach and a list of references see [108].

3For a review and list of references, see [115].
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way [109]

ρθ(r) =
M

(4πθ)3/2
e−

r2

4θ ; Limθ→0ρθ(r) =
Mδ(r)

4πr2
(3.17)

where the noncommutative parameter θ is a small (∼ Plank length2) positive number.

This mass distribution is inspired from the coherent state approach, where one has to con-

sider the Voros star product instead of the Moyal star product [88]. Using this expression

one can write the mass of the black hole of radius r in the following way

mθ(r) =

∫ r

0

4πr′2ρθ(r
′)dr′ =

2M√
π
γ(3/2, r2/4θ) (3.18)

where γ(3/2, r2/4θ) is the lower incomplete gamma function, which is discussed in the

appendix. In the limit θ → 0 it becomes the usual gamma function (Γtotal). Therefore

mθ(r)→M is the commutative limit of the noncommutative mass mθ(r).

To find a solution of Einstein equation with the noncommutative mass density of the

type (3.17), the temporal component of the energy momentum tensor (Tθ)
ν
µ is identified

as, (Tθ)
t
t = −ρθ. Now demanding the condition on the metric coefficients (gθ)tt = −(gθ)

rr

for the noncommutative Schwarzschild metric and using the covariant conservation of

energy momentum tensor (Tθ)
ν
µ ;ν = 0, the energy momentum tensor can be fixed to the

form,

(Tθ)
ν
µ = diag[−ρθ, pr, p′, p′], (3.19)

where, pr = −ρθ and p′ = pr − r
2
∂rρθ. This form of energy momentum tensor is different

from the perfect fluid because here pr and p′ are not same,

p′ =
[ r2

4θ
− 1

] M

(4πθ)
3
2

e−
r2

4θ (3.20)

i.e. the pressure is anisotopic.

The solution of Einstein equation (in c = G = 1 unit) (Gθ)
µν = 8π(Tθ)

µν , using (3.19)

as the matter source, is given by the line element [109],

ds2 = −fθ(r)dt2 +
dr2

fθ(r)
+ r2dΩ2; fθ(r) = −(gθ)tt =

(
1− 4M

r
√
π
γ(

3

2
,
r2

4θ
)

)
. (3.21)
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Incidentally, this is same if one just replaces the mass term in the usual commuta-

tive Schwarzschild space-time by the noncommutative mass mθ(r) from (3.18). Also

observe that for r >>
√
θ the above noncommutative metric reduces to the standard

Schwarzschild form.

It is interesting to note that the noncommutative metric (3.21) is still stationary, static

and spherically symmetric as in the commutative case. One or more of these properties

is usually violated for other approaches [104, 105, 106] of introducing noncommutativity,

particularly those based on Seiberg-Witten maps that relate commutative spaces with

noncommutative ones.

The event horizon can be found where grr(rH) = 0, that is

rH =
4M√
π
γ
(3

2
,
r2
H

4θ

)
. (3.22)

This equation cannot be solved for rH in a closed form. In the large radius regime

(
r2H
4θ
>> 1) we use the expanded form of the incomplete γ function given in the Appendix

(eq. (3A.4)) to solve eq. (3.22) by iteration. Keeping upto the order 1√
θ
e−

M2

θ , we find

rH ' 2M
(
1− 2M√

πθ
e−

M2

θ

)
. (3.23)

3.2.2 Noncommutative Hawking temperature, tunneling rate

and entropy in the presence of back reaction

Here the one loop back reaction effect on the space-time will be considered. As explained

earlier the modified surface gravity will be of the form given by (3.2). But in this case

since the only macroscopic parameter is mθ, ξ will has the following structure:

ξ = β
M2

p

m2
θ

(3.24)

where, as earlier, β is a pure numerical factor. In the commutative picture β is known

to be related to the trace anomaly coefficient [63, 64]. Putting this form of ξ in (3.2) we

get,

κ = κ0[rH ]
(
1 + β

M2
p

m2
θ

)
. (3.25)
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Equation (3.25) is recast as,

κ = κ0[rH ]
(
1 +

α

m2
θ(rh)

)
(3.26)

where α = βM2
p . Since as mentioned already, the noncommutative parameter θ is of the

order of l2p, α and θ are of the same order. This fact will be used later when doing the

graphical analysis.

In order to calculate the right hand side of (3.26), we need to obtain an expression for

noncommutative classical surface gravity at the horizon of the black hole (κ0[rH ]). This

is done by using (2.19). For the classical noncommutative Schwarzschild spacetime the

metric coefficients are given by (3.21). The value of κ0[rH ] is thus found to be,

κ0[rH ] =
f ′(rH)

2
=

1

2

[ 1

rH
− r2

H

4θ
3
2

e−
r2
H
4θ

γ
(

3
2
,
r2H
4θ

)]
. (3.27)

Inserting (3.27) in (3.26) we get,

κ =
1

2

[ 1

rH
− r2

H

4θ
3
2

e−
r2
H
4θ

γ
(

3
2
,
r2H
4θ

)](
1 +

α

m2
θ(rH)

)
. (3.28)

In order to write the above equation completely in terms of rH we have to express the

mass mθ in terms of rH . For that we compare equations (3.18) and (3.22) to get,

mθ(rH) =
rH
2
. (3.29)

This relation is the noncommutative deformation of the standard radius-mass relation for

the usual (commutative space) Schwarzschild black hole. Expectedly in the limit θ → 0

eq. (3.29) reduces to its commutative version rH = 2M .

Substituting (3.29) in (3.28) we get the value of modified noncommutative surface

gravity

κ =
1

2

[ 1

rH
− r2

H

4θ
3
2

e−
r2
H
4θ

γ
(

3
2
,
r2H
4θ

)](
1 +

4α

r2
H

)
. (3.30)
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So from (2.29), the modified noncommutative Hawking temperature including the effect

of back reaction is given by,

TH =
~κ
2π

=
~
4π

[ 1

rH
− r2

H

4θ
3
2

e−
r2
H
4θ

γ
(

3
2
,
r2H
4θ

)](
1 +

4α

r2
H

)
. (3.31)

If the back reaction is ignored (i. e. α = 0), the expression for the Hawking temperature

agrees with that given in [109]. Also for the θ → 0 limit, one can recover the standard

result (3.14) [63, 64].

In the standard (commutative) case TH diverges as M → 0 and this puts a limit on

the validity of the conventional description of Hawking radiation. Against this scenario,

temperature (3.31) includes noncommutative and back reaction effects which are relevant

at distances comparable to
√
θ. The behaviour of the temperature TH as a function of

horizon radius rH is plotted in fig.(3.1) (with positive α) and in fig.(3.2) (with negative

α).

Fig.(3.1) shows that in the region rH '
√
θ, the effect of noncommutativity signifi-

cantly changes the nature of commutative space curves. Interestingly two noncommuta-

tive curves, whether including back reaction or not are qualitatively same. Both of them

attain a maximum value at rH = r̃0 ' 4.7
√
θ and then sharply drop to zero forming

an extremal black hole. In the region rH < r0 ' 3.0
√
θ there is no black hole, because

physically TH cannot be negative. The only difference between them is that the back

reaction effect increases the maximum temperature by 20%. Infact, in the commutative

space also, back reaction effect increases the value of Hawking temperature. But quite

contrary to the noncommutative curves, both of them diverge as rH → 0. As easily

observed, the Hawking paradox is circumvented by noncommutativity, with or without

back reaction. This was also noted in [109] where, however, the quantitative effects of

back reaction were not considered.

On the other hand fig.(3.2) shows that if any of the two effects (i.e. either noncom-

mutativity or back reaction) is present TH drops to zero. For α = 0, θ 6= 0 (yellow curve)

TH becomes zero at rH = r0 ' 3.0
√
θ and for α 6= 0, θ = 0 (red curve) it becomes zero

at rH = r0 ' 2.0
√
θ . These cases therefore bypass the Hawking paradox. But for non-

commutative black hole with back reaction (α 6= 0, θ 6= 0), TH is zero for two values of
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Figure 3.1: TH Vs. rH plot (Here α = θ, α and θ are positive).

rH is plotted in units of
√
θ and TH is plotted in units of 1√

θ
.

Red curve: α 6= 0, θ = 0.

Blue curve: α = 0, θ = 0.

Black curve: α 6= 0, θ 6= 0.

Yellow curve: α = 0, θ 6= 0.

rH : rH ' 3.0
√
θ and rH = 2.0

√
θ and then it diverges towards positive infinity. This is

not physically possible since after entering the forbidden zone it resurfaces on the allowed

sector. So for both noncommutativity and back reaction effect, α can never be negative.

Having obtained the Hawking temperature of the black hole we calculate the Bekenstein-

Hawking entropy. The expression of entropy can be obtained from the second law of

thermodynamics. But instead of using it we employ the formula (2.59) to calculate the

entropy. Using (3.23) the modified surface gravity (3.30) can be approximately expressed

in terms of M . To the leading order, we obtain,

κ(M) =
M2 + α

4M3

[
1− 4M5

(M2 + α)θ
√
πθ
e−

M2

θ

]
+O(

1√
θ
e−

M2

θ ). (3.32)
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Figure 3.2: TH Vs. rH plot (Here |α| = θ, α is negative but θ is positive).

rH is plotted in units of
√
θ and TH is plotted in units of 1√

θ
.

Red curve: α 6= 0, θ = 0.

Blue curve: α = 0, θ = 0.

Black curve: α 6= 0, θ 6= 0.

Yellow curve: α = 0, θ 6= 0.

Substituting this in (2.51) and then integrating over ω′ we have,

Im S = 4πω(M − ω

2
) + 2πα ln

[(M − ω)2 + α

M2 + α

]
− 8

√
π

θ
M3e−

M2

θ

+ 8

√
π

θ
(M − ω)3e−

(M−ω)2

θ

+ const.(independent of M) +O(
√
θe−

M2

θ ). (3.33)

So by the relation (2.55) the modified tunneling probability due to noncommutativity

and back reaction effects is,

Γ ∼
[
1−

2ω(M − ω
2
)

M2 + α

]− 4πα
~

exp
[16

~

√
π

θ
M3e−

M2

θ − 16

~

√
π

θ
(M − ω)3e−

(M−ω)2

θ

+ const.(independent of M)
]
exp

[
− 8πω

~
(M − ω

2
)
]
. (3.34)
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The last exponential factor of the tunneling probability was previously obtained by Parikh

and Wilczek [23] where neither noncommutativity nor back reaction effects were consid-

ered. The factors before this exponential are actually due the effect of back reaction

and noncommutativity. It will eventually give the correction to the Bekenstein-Hawking

entropy and the Hawking temperature as will be shown below. Taking θ → 0 limit we

can immediately reproduce the commutative tunneling rate for Schwarzschild black hole

with back reaction effect [57].

We are now in a position to obtain the noncommutative deformation of the Bekenstein-

Hawking area law. The first step is to compute the entropy change ∆Sbh. Using (2.55)

and (3.34) we obtain, to the leading order,

∆Sbh = Sfinal − Sinitial ' −8πω

~
(M − ω

2
)− 4πα

~
ln

[(M − ω)2 + α

M2 + α

]
+

16

~

√
π

θ
M3e−

M2

θ

− 16

~

√
π

θ
(M − ω)3e−

(M−ω)2

θ + const.(independent of M). (3.35)

Next using the stability criterion d(∆Sbh)
dω

= 0 for the black hole, one obtains the only

physically possible solution for ω as ω = M . Substituting this value of ω in (3.35) and

setting Sfinal = 0 we have the Bekenstein-Hawking entropy

Sbh = Sinitial '
4πM2

~
− 4πα

~
ln (

M2

α
+ 1)

− 16

~

√
π

θ
M3e−

M2

θ + const.(independent of M). (3.36)

Neglecting the back reaction effect (α = 0) the above expression of black hole entropy is

written as

Sbh '
4πM2

~
− 16

~

√
π

θ
M3e−

M2

θ . (3.37)

Now in order to write the above equation in terms of the noncommutative horizon area

(Aθ), we use (3.23) to obtain,

Aθ = 4πr2
H = 16πM2 − 64

√
π

θ
M3e−

M2

θ +O(
√
θe−

M2

θ ). (3.38)

Comparing equations (3.37) and (3.38) we see that at the leading order the noncommu-

tative black hole entropy satisfies the area law

Sbh =
Aθ
4~
. (3.39)
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This is functionally identical to the Bekenstein-Hawking area law in the commutative

space.

Considering θ → 0 limit in (3.36) we have the corrected form of Bekenstein-Hawking

entropy for commutative Schwarzschild black hole with back reaction effect [64, 57]. The

well known logarithmic correction [71] is reproduced (see equation (3.13)).

Now using the second law of thermodynamics (2.67) we can find the corrected form

of the Hawking temperature TH due to back reaction. This is obtained from (3.36) as,

1

TH
=
dSbh
dM

=
8πM3

~(M2 + α)
+

32

~

√
π

θ
3
2

M4e−
M2

θ +O(
1√
θ
e−

M2

θ ). (3.40)

Therefore the back reaction corrected noncommutative Hawking temperature is given by

TH =
~(M2 + α)

8πM3
− ~M2

2(πθ)
3
2

e−
M2

θ +O(
1√
θ
e−

M2

θ ). (3.41)

We now provide a simple consistency check on the relation (3.31). The Hawking

temperature is recalculated using this relation and showing that it reproduces (3.41).

For the large radius limit, (3.31) takes the value,

TH '
~
4π

[ 1

rH
− r2

H

2
√
πθ3/2

e−
r2
H
4θ

](
1 +

4α

r2
H

)
. (3.42)

Now the approximated form of rH in terms of M (3.23) is substituted in (3.42) to get

the relation (3.41) upto the leading order in the noncommutative parameter. This shows

the self consistency of our calculation.

For α = θ = 0, the expression (3.41) reduces to the usual Hawking temperature

TH = ~
8πM

for a Schwarzschild black hole. Also, keeping the back reaction (α) but taking

θ → 0 limit, we reproduce the commutative Hawking temperature (3.14) [63, 64, 57].

3.3 Discussions

We have considered self-gravitation and (one loop) back reaction effects in tunneling for-

malism for Hawking radiation. The modified tunneling rate was computed. From this



54 Chapter 3. Null geodesic approach

modification, corrections to the semiclassical expressions for entropy and Hawking tem-

perature were obtained. Also, the logarithmic correction to the semiclassical Bekenstein-

Hawking area law was reproduced.

The other significant part of this chapter was the application of our formulation to a

noncommutative Schwarzschild metric, keeping in mind the consequence of back reaction.

Several thermodynamic entities like the temperature and entropy were computed. The

tunneling rate was also derived. The temperature, in particular, was obtained in a closed

form. This result was analyzed in detail using two graphical representations. We gave

particular attention to the small scale behaviour of black hole temperature where the

effects of both noncommutativity and back reaction are highly nontrivial. The graphs

presented here are naturally more general than [109, 63], because in [109] the effect of

back reaction was not included and in [63] space time was taken to be commutative

in nature. Expectedly in suitable limits, the results of our paper reduced to that of

[109, 63], but the combination of noncommutativity and back reaction, as shown here,

gave new results at small scale. In particular, it was shown that in the presence of both

noncommutativity and back reaction, the back reaction parameter α cannot be negative.

Interestingly, even for the commutative case, arguments based on quantum geometry

[57, 71, 66] fix a positive value for α.

In the noncommutative analysis, with positive α, (Fig 3.1), the maximum Hawk-

ing temperature got enhanced in the presence of back reaction. However, the Hawking

paradox was avoided whether or not the back reaction is included.

Apart from the temperature, other variables like the tunneling rate and entropy were

given upto the leading order in the noncommutative parameter. The entropy was ex-

pressed in terms of the area. The result was a noncommutative deformation of the

Bekenstein-Hawking area law, preserving the usual functional form. Since both TH = ~κ
2π

and the area law retained their standard forms it suggests that the laws of noncommuta-

tive black hole thermodynamics are a simple noncommutative deformation of the usual

laws. However, it must be remembered this result was obtained only in the leading order

approximation. For r ∼
√
θ this approximation is expected to be significant.

As a final remark we mention that although our results are presented for the Schwarzschild

metric, the formulation is resilient enough to discuss both back reaction and noncommu-
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tativity in other types of black holes.





Appendix

3.A Incomplete gamma function

The lower incomplete gamma function is given by

γ(a, x) =

∫ x

0

ta−1e−tdt (3A.1)

whereas the upper incomplete gamma function is

Γ(a, x) =

∫ ∞

x

ta−1e−tdt (3A.2)

and they are related to the total gamma function through the following relation

Γtotal(a) = γ(a, x) + Γ(a, x) =

∫ ∞

0

ta−1e−tdt. (3A.3)

Furthermore, for large x, i.e. x >> 1, the asymptotic expansion of the lower incomplete

gamma function is given by

γ(
3

2
, x) = Γtotal(

3

2
)− Γ(

3

2
, x)

'
√
π

2

[
1− e−x

∞∑
p=0

x
1−2p

2

Γtotal(
3
2
− p)

]
. (3A.4)

Using the definition (3A.1) and then integrating by parts we have

γ(a+ 1, x) =

∫ x

0

tae−tdt = −tae−t|x0 + a

∫ x

o

ta−1e−tdt

= −xae−x + aγ(a, x). (3A.5)

Similarly by the definition (3A.2) one can show

Γ(a+ 1, x) = xae−x + aΓ(a, x). (3A.6)
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3.B Some useful formulas

I1 =

∫ b

a

e−αx
2

dx =
1

2α
1
2

[√
π − γ(1

2
, αa2)− Γ(

1

2
, αb2)

]
(3B.1)

I2 =

∫ b

a

x2e−αx
2

dx =
1

2α
3
2

[√π
2
− γ(3

2
, αa2)− Γ(

3

2
, αb2)

]
(3B.2)

I3 =

∫ b

a

x4e−αx
2

dx =
1

2α
5
2

[3
√
π

4
− γ(5

2
, αa2)− Γ(

5

2
, αb2)

]
(3B.3)



Chapter 4

Tunneling mechanism and anomaly

Ever since Hawking’s original observation [4, 5] that black holes radiate, there have been

several derivations [8, 9, 22, 23, 10, 11, 16, 17, 18] of this effect. A common feature

in these derivations is the universality of the phenomenon; the Hawking radiation is

determined by the horizon properties of the black hole leading to the same answer. This,

in the absence of direct experimental evidence, definitely reinforces Hawking’s original

conclusion. Moreover, it strongly suggests that there is some fundamental mechanism

which could, in some sense, unify the various approaches.

In this chapter we show that chirality is the common property which connects the

tunneling formalism [22, 23] and the anomaly method [9, 10, 11, 16, 17, 18, 19, 20,

21, 116, 117] in studying Hawking effect. Apart from being among the most widely

used approaches, interest in both the anomaly and tunneling methods has been revived

recently leading to different variations and refinements in them [16, 18, 20, 21, 116, 117,

72, 73, 74, 78, 55, 118]. The calculation will be performed using a family of metrics

that includes a subset of the stationary, spherically symmetric space-times which are

asymptotically flat. Also, the results are derived using mostly physical reasoning and do

not require any specific technical skill.

Before commencing on our analysis we briefly recapitulate the basic tenets of the

tunneling and anomaly methods. The idea of a tunneling description, quite akin to what

we know in usual quantum mechanics where classically forbidden processes might be

allowed through quantum tunneling, dates back to 1976 [119]. Present day computations

generally follow either the null geodesic method [23] or the Hamilton-Jacobi method [22],
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both of which rely on the semi-classical WKB approximation yielding equivalent results.

The essential idea, as explained earlier, is that a particle-antiparticle pair forms close to

the event horizon. The ingoing negative energy mode is trapped inside the horizon while

the outgoing positive energy mode is observed at infinity as the Hawking flux.

Although the notion of an anomaly, which represents the breakdown of some classical

symmetry upon quantisation, is quite old, its implications for Hawking effect were first

studied in [9]. It was based on the conformal (trace) anomaly but the findings were

confined only to two dimensions. However it is possible to apply this method to general

dimensions. Recently a new method was put forward in [10, 11] where a general (any

dimensions) derivation was given. It was based on the well known fact that the effective

theory near the event horizon is a two dimensional conformal theory. The ingoing modes

are trapped within the horizon and cannot contribute to the effective theory near the

horizon. Thus the near horizon theory becomes a two dimensional chiral theory. Such a

chiral theory suffers from a general coordinate (diffeomorphism) anomaly manifested by

a nonconservation of the stress tensor. Using this gravitational anomaly and a suitable

boundary condition the Hawking flux was obtained. A covariant version of this method,

that was also technically simpler, was given in [16]. This was followed by another, new,

effective action based approach in [18, 17].

The first step in our procedure is to derive the two dimensional gravitational anomaly

using the notion of chirality. This is a new method of obtaining the gravitational anomaly.

Once this anomaly is obtained, the flux is easily deduced. Exploiting the same notion

of chirality the probability of the outgoing mode in the tunneling approach will be com-

puted. The Hawking temperature then follows from this probability. At an intermediate

stage of this computation we further show that the chiral modes obtained in the tun-

neling formalism reproduce the gravitational anomaly thereby completing the circle of

arguments regarding the connection of the two approaches.

4.1 Metric and null coordinates

Consider a black hole characterised by a spherically symmetric, static space-time and

asymptotically flat metric of the form (2.1). For simplicity we consider here f(r) =
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g(r) = F (r) and hence the event horizon r = rH is defined by F (rH) = 0. Now it is well

known [10, 11, 14, 120] that near the event horizon the effective theory reduces to a two

dimensional conformal theory whose metric is given by the (r − t) sector of the original

metric (2.1).

It is convenient to express (2.1) in the null tortoise coordinates which are defined as,

u = t− r∗, v = t+ r∗; (4.1)

where r∗ is defined by the relation (2.20). Under these set of coordinates the relevant

(r − t)-sector of the metric (2.1) takes the form,

ds2 = −F (r)

2
(du dv + dv du) (4.2)

Chiral conditions, to be discussed in the next section, are most appropriately described

in these coordinates.

4.2 Chirality conditions

Consider the Klein-Gordon (KG) equation (2.2) for a massless scalar particle governed

by the metric (4.2). Then the KG equation reduces to the following form:

2∂u∂vφ(u, v) = 0. (4.3)

The general solution of this can be taken as φ(u, v) = φ(R)(u)+φ(L)(v) where φ(R)(u) and

φ(L)(v) are the right (outgoing) and left (ingoing) modes (see Appendix 2.A) satisfying

∇vφ
(R) = 0, ∇uφ

(R) 6= 0; ∇uφ
(L) = 0, ∇vφ

(L) 6= 0. (4.4)

These equations are expressed simultaneously as,

∇µφ = ±ε̄µν∇νφ = ±
√
−gεµν∇νφ (4.5)

where +(−) stand for left (right) mode and εµν is the numerical antisymmetric tensor

with εuv = εtr = −1. This is the chirality condition 1. In fact the condition (4.5) holds

1In analogy with studies in 2d CFT this condition is usually referred as holomorphy condition and

the chiral modes φ(L,R) are called the holomorphic modes.
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for any chiral vector Jµ in which case Jµ = ±ε̄µνJν . Likewise, the chirality condition for

the energy-momentum tensor is [19],

Tµν = ±1

2
(ε̄µσT

σ
ν + ε̄νσT

σ
µ ) +

1

2
gµνT

α
α (4.6)

The + (−) sign corresponds to the left (right) mode satisfying,

T (R)
vv = 0, T (R)

uu 6= 0 (4.7)

T (L)
uu = 0, T (L)

vv 6= 0 . (4.8)

These are the analogous of (4.4). They manifest the symmetry under the interchange

u ↔ v and L ↔ R. In the next section, using these chirality conditions we will derive

the explicit form for the gravitational anomaly that reproduces the Hawking flux.

4.3 Chirality, gravitational anomaly and Hawking flux

It is well known that for a non-chiral (vector like) theory it is not possible to simultane-

ously preserve, at the quantum level, general coordinate invariance as well as conformal

invariance. Since the former invariance is fundamental in general relativity, conformal

invariance is sacrificed leading to a nonvanishing trace of the stress tensor, called the

trace anomaly. Using this trace anomaly and the chirality condition we will derive an

expression for the chiral gravitational (diffeomophism) anomaly from which the Hawking

flux is computed.

The energy-momentum tensor near an evaporating black hole is split into a traceful

and traceless part by [121],

Tµν =
R

48π
gµν + θµν (4.9)

where θµν is symmetric (i.e. θµν = θνµ), so that it preserves the symmetricity of Tµν , and

traceless (i.e. θµµ = 0 so that in u, v coordinates θuv = 0). The traceful part is contained

in the first piece leading to the trace anomaly, T µµ = R
24π

. Also, since general coordinate

invariance is preserved, ∇µTµν = 0, from which it follows that the solutions of θµν satisfy,

∇µθµν = − 1

48π
∇νR (4.10)
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Now the energy-momentum tensor (4.9) can be regarded as the sum of the contribu-

tions from the right and left moving modes. Symmetry principle tells that the contribu-

tion from one mode is exactly equal to that from the other mode, only that u, v have to

be interchanged. Since Tµν is symmetric we have Tµν = T
(R)
µν + T

(L)
µν with

T (R/L)
µν =

R

96π
gµν + θ(R/L)

µν (4.11)

where θµν = θ
(R)
µν + θ

(L)
µν (in analogy with Tµν). Therefore the chirality condition (4.7) and

the traceless condition of θµν immediately show

θ(R)
uv = 0, θ(R)

vv = 0, θ(R)
uu 6= 0; θ(L)

uv = 0, θ(L)
uu = 0, θ(L)

vv 6= 0 . (4.12)

The trace anomaly for the chiral components follows from (4.11) and (4.12),

T µµ
(R) = T µµ

(L) =
1

2
T µµ =

R

48π
. (4.13)

To find out the diffeomorphism anomaly for the chiral components we will use (4.11).

Considering only the right mode, for example, we have

∇µT (R)
µν =

1

96π
∇νR +∇µθ(R)

µν . (4.14)

Next, using (4.10) and (4.12) for the right mode we obtain,

∇µθ(R)
µu = − 1

48π
∇uR; ∇µθ(R)

µv = 0 (4.15)

Substituting these in (4.14) we get, once for ν = u and then ν = v,

∇µT (R)
µu = − 1

96π
∇uR; ∇µT (R)

µv =
1

96π
∇vR. (4.16)

Therefore, combining both the above results yields

∇µT (R)
µν =

1

96π
ε̄νλ∇λR (4.17)

which is the chiral (gravitational) anomaly for the right mode. Similarly the chiral

anomaly for left mode can also be obtained which has a similar form except for a minus

sign on the right side of (4.17). This anomaly is in covariant form and so it is also called
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the covariant gravitational anomaly. The structure, including the normalization, agrees

with that found by using explicit regularization of the chiral stress tensor [122, 123].

From (4.17) and (4.13) a simple relation follows between the gravitational anomaly

(Aν) and the trace anomaly (T ),

Aν =
1

2
ε̄νλ∇λT. (4.18)

Such a relation is not totally unexpected since covariant expressions must involve the

Ricci scalar. However (4.18) should not be interpreted as a Wess-Zumino consistency

condition which involves only ‘consistent’ expressions [123]. Here, on the contrary, we

are dealing with covariant expressions.

The covariant anomaly (4.17) is now used to obtain the Hawking flux. As was men-

tioned earlier the effective two dimensional theory near the horizon becomes chiral. The

chiral theory has the anomaly (4.17). Taking its ν = u component we obtain,

∂rT
(R)
uu =

F

96π
∂rR =

F

96π
∂r(F

′′) =
1

96π
∂r(FF

′′ − F ′2

2
) (4.19)

which yields,

T (R)
uu =

1

96π

(
FF

′′ − F ′2

2

)
+ Cuu (4.20)

where Cuu is an integration constant.

Now, in the coordinates U = −κe−κu and V = κeκv, we have the following relations

for components of the energy-momentum tensor:

T
(R)
UU =

T
(R)
uu

(κU)2
(4.21)

T
(R)
V V =

T
(R)
vv

(κV )2
. (4.22)

According to the definition of Unruh vacuum (proper vacuum for studying Hawking

effect) for outgoing mode TUU must be finite at future horizon (U → 0), implying that

a freely falling observer sees a finite amount of flux at the outer horizon. This requires

T
(R)
uu (r → rH) = 0, leads to Cuu = F ′2(rH)

192π
. The corresponding condition on the ingoing

mode for the Unruh vacuum - TV V is finite at infinity - is satisfied by default since, due
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to chirality, these are absent (T
(R)
vv = 0). This choice of the Unruh vacuum is similar to

imposing the covariant boundary condition [19]. Note, however, that the Unruh condition

on the ingoing modes T
(R)
vv (r →∞) = 0 is applied at asymptotic infinity where the theory

is non-chiral. This does not affect our interpretation since, asymptotically, the anomaly

(4.17) vanishes. Hence the results from the chiral expressions will agree with the non-

chiral ones at asymptotic infinity. Indeed, the Hawking flux, obtained by taking the

asymptotic infinity limit (r →∞) of (4.20),

T (R)
uu (r →∞) = Cuu =

F ′2(rH)

192π
=

κ2

48π
(4.23)

where κ is the surface gravity of the black hole given by (2.19), reproduces the known

result corresponding to the Hawking temperature (2.29) in ~ = 1 unit [10, 11, 12, 16, 17,

18, 19, 20, 21, 117, 118]. The other terms in (4.20) drop out due to asymptotic flatness.

4.4 Chirality, quantum tunneling and Hawking tem-

perature

Here, using the chirality condition (4.5), we will derive the tunneling probability, which

will eventually yield the Hawking temperature. Under the (t − r) sector of the metric

(2.1), this condition corresponds to,

∂tφ(r, t) = ±F (r)∂rφ(r, t) (4.24)

As before +(−) stand for left (right) mode. Putting the standard WKB ansatz (2.4) and

the expansion for S(r, t) (2.6) in (4.24), we get in the ~→ 0 limit the familiar semiclassical

Hamilton-Jacobi equation (2.7), which is the basic equation in the tunneling mechanism

for studying Hawking radiation. This has been derived earlier from the Klein-Gordon

equation with the background metric (2.1) and the ansatz (2.4) [22, 55].

Now proceeding in the similar way as earlier, we obtain the solution for S0(r, t) as,

S0(r, t) = ωt± ω
∫

dr

F (r)
(4.25)
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which is nothing but (2.10) for f(r) = g(r) = F (r). Expressing (4.25) in the null tortoise

coordinates (see (4.1)), defined inside and outside of the event horizon, we obtain(
S

(R)
0 (r, t)

)
in

= ω(tin − r∗in) = ωuin; (4.26)(
S

(L)
0 (r, t)

)
in

= ω(tin + r∗in) = ωvin (4.27)(
S

(R)
0 (r, t)

)
out

= ω(tout − r∗out) = ωuout; (4.28)(
S

(L)
0 (r, t)

)
out

= ω(tout + r∗out) = ωvout . (4.29)

Substituting these in (2.4) one can obtain the right and left modes for both sectors:(
φ(R)

)
in

= e−
i
~ωuin ;

(
φ(L)

)
in

= e−
i
~ωvin (4.30)(

φ(R)
)
out

= e−
i
~ωuout ;

(
φ(L)

)
out

= e−
i
~ωvout (4.31)

which satisfy the condition (4.4). Precisely these modes were used previously to find

the trace anomaly [121] as well as the chiral (gravitational) anomaly [122] by the point

splitting regularization technique. In our formulation these modes (4.31) are a natural

consequence of chirality.

Now in the tunneling formalism, as stated earlier, a virtual pair of particles is produced

in the black hole. One of this pair can quantum mechanically tunnel through the horizon.

This particle is observed at infinity while the other goes towards the center of the black

hole. While crossing the horizon the nature of the coordinates changes. This can be

explained in the following way. The Kruskal time (T ) and space (X) coordinates inside

and outside the horizon are defined by (2.17) and (2.18) respectively. In section 2.1.1

of chapter 2 it has been shown that these two sets of coordinates are connected by the

relations (2.21) and (2.22), so that the Kruskal coordinates get identified as Tin = Tout and

Xin = Xout. In particular, for the Schwarzschild metric, the surface gravity is κ = 1
4M

and

thus the extra term connecting tin and tout is given by (−2πiM). Such a result (for the

Schwarzschild case) was earlier discussed in [78]. It should be mentioned that instead of

Kruskal coordinates one can do the analysis employing the Painleve coordinates [95] since

in these coordinates the apparent singularity at the horizon is also removed. Nevertheless

it is noteworthy that the coordinate transformation from the Schwarzschild-like to the

Painleve coordinates contains a singularity at the horizon while transformations (2.17)
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and (2.18) do not have such singularity. Therefore, Painleve coordinates are not suitable

for the present analysis. In addition, there is an arbitrariness in the mapping Tin = Tout

and Xin = Xout because they can also be obtained if, instead of (2.21) and (2.22), we use

the following relations

tin = tout + i
π

2κ
; r∗in = r∗out − i

π

2κ
. (4.32)

However, this set of coordinates gives unphysical results. This issue will be clarified in the

subsequent analysis. Therefore, we can exclude the set of coordinates given by equation

(4.32).

Employing equations (2.21) and (2.22) in equation (4.1), we can obtain the relations

that connect the null coordinates defined inside and outside the black hole event horizon

uin = tin − r∗in = uout − i
π

κ
(4.33)

vin = tin + r∗in = vout . (4.34)

Under these transformations the modes in equations (4.30) and (4.31) which are travel-

ling in the “in” and “out” sectors of the black hole horizon are connected through the

expressions

φ
(R)
in = e−

πω
~κ φ

(R)
out (4.35)

φ
(L)
in = φ

(L)
out . (4.36)

Since the left moving mode travels towards the center of the black hole, its probability

to go inside, as measured by an external observer, is expected to be unity. This is easily

verified by computing

P (L) = |φ(L)
in |2 = |φ(L)

out|2 = 1 (4.37)

where we have used (4.36) to recast φ
(L)
in in terms of φ

(L)
out since measurements are done by

an outside observer. This shows that the left moving (ingoing) mode is trapped inside

the black hole, as expected.
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On the other hand the right moving mode, i.e. φ
(R)
in , tunnels through the event horizon.

So to calculate the tunneling probability as seen by an external observer one has to use

the transformation (4.35) to recast φ
(R)
in in terms of φ

(R)
out . Then we find

P (R) = |φ(R)
in |2 = |e−

πω
~κ φ

(R)
out |2 = e−

2πω
~κ . (4.38)

Finally, using the principle of “detailed balance” [22], i.e. P (R) = e
− ω

TH P (L) = e
− ω

TH ,

and making comparison with equation (4.38), one immediately reproduces the Hawking

temperature (2.29). This is the standard expression corresponding to the flux (4.23) in

units of ~ = 1.

It should be pointed out that the tunneling probability given by equation (4.38) goes

to zero in the classical limit (~ → 0), which is expected since classically a black hole

cannot radiate. On the other hand, if the above analysis is repeated by utilizing the

set of coordinates given in equation (4.32), then P (R) = e
2πω
~κ . This probability diverges

in the classical limit which is unphysical. Therefore, the set of coordinates presented in

equation (4.32) are not appropriate for our study.

As we observe the ingoing modes are trapped and do not play any role in the com-

putation of the Hawking temperature. A similar feature occurs in the anomaly approach

where the ingoing modes are neglected leading to a chiral theory that eventually yields the

flux. These observations provide a physical picture of chirality connecting the tunneling

and anomaly methods.

4.5 Discussions

We have shown that the notion of chirality pervades the anomaly and tunneling for-

malisms thereby providing a close connection between them. This is true both from a

physical as well as algebraic perspective. The chiral restrictions play a pivotal role in the

abstraction of the anomaly from which the flux is computed. The same restrictions, in

the tunneling formalism, lead to the Hawking temperature corresponding to that flux.

A dimensional reduction is known to reduce the theory effectively to a two dimensional

conformal theory near the event horizon. The ingoing (left moving) modes are lost inside

the horizon. They cannot contribute to the near horizon theory thereby rendering it
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chiral and, hence, anomalous. Using the restrictions imposed by chirality we obtained

a form for this (gravitational) anomaly, manifested by a nonconservation of the stress

tensor, by starting from the familiar form of the trace anomaly. From a knowledge of the

gravitational anomaly we were able to obtain the flux.

The chirality constraints were then exploited to obtain the equations for the ingo-

ing and outgoing modes in the tunneling formalism, following the standard geometrical

(WKB) approximation. We reformulated the tunneling mechanism to highlight the role

of coordinate systems in the chiral framework. A specific feature of this reformulation is

that explicit treatment of the singularity in (4.25) is not required since we do not carry

out the integration. Only the modes inside (φin) and outside (φout) the horizon, both

of which are well defined, are required. The singularity now manifests in the complex

transformations (2.21) and (2.22) that connect these modes across the horizon. In this

way our formalism, contrary to the traditional approaches [22, 23] avoids explicit complex

path analysis. It is implicit only in the expression for S0(r, t) (4.25). The probability for

finding the ingoing modes was shown to be unity. These modes do not play any role in

the tunneling approach which is the exact analogue of omitting them when considering

the effective near horizon theory in the anomaly method.

It is useful to observe that the crucial role of chirality in both approaches is manifested

in the near horizon regime. This reaffirms the universality of the Hawking effect being

governed by the properties of the event horizon.





Chapter 5

Black body spectrum from tunneling

mechanism

So far we have discussed the Hawking effect by the tunneling mechanism. However,

the analysis was confined to obtaining the Hawking temperature only by comparing the

tunneling probability of an outgoing particle with the Boltzmann factor. There was

no discussion of the spectrum. Hence it is not clear whether this temperature really

corresponds to the temperature of a black body spectrum associated with black holes.

One has to take recourse to other results to really justify the fact that the temperature

found in the tunneling approach is indeed the Hawking black body temperature. Indeed,

as far as we are aware, there is no discussion of the spectrum in the different variants

of the tunneling formalism. In this sense the tunneling method, presented so far, is

incomplete.

In this chapter we rectify this shortcoming. Using density matrix techniques we will

directly find the spectrum from a reformulation of the tunneling mechanism discussed in

the previous chapter. For both bosons and fermions we obtain a black body spectrum

with a temperature that corresponds to the familiar semi-classical Hawking expression.

Our results are valid for black holes with spherically symmetric geometry.
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5.1 Black body spectrum and Hawking flux

Here the emission spectrum of the black hole will be calculated by the density matrix

technique. It has been shown in chapter 4 that a pair created inside the black hole is

represented by the modes (4.30). Since the Hawking effect is observed from outside the

black hole, one must recast these modes in terms of the outside coordinates. This will

yield the relations between the “in” and “out” modes. These are given by (4.35) and

(4.36). These transformations are the essential ingredients of constructing all the physical

observables regarding the Hawking effect, because the observer is situated outside the

event horizon of the black hole.

Now to find the black body spectrum and Hawking flux, we first consider n number

of non-interacting virtual pairs that are created inside the black hole. Each of these pairs

is represented by the modes defined by (4.30). Then the physical state of the system,

observed from outside, is given by,

|Ψ >= N
∑
n

|n(L)
in > ⊗|n(R)

in >= N
∑
n

e−
πnω
~κ |n(L)

out > ⊗|n
(R)
out > (5.1)

where use has been made of the transformations (4.35) and (4.36). Here |n(L)
out > corre-

sponds to n number of left going modes and so on while N is a normalization constant

which can be determined by using the normalization condition < Ψ|Ψ >= 1. This

immediately yields,

N =
1( ∑

n

e−
2πnω

~κ

) 1
2

. (5.2)

The above sum will be calculated for both bosons and fermions. For bosons n =

0, 1, 2, 3, .... whereas for fermions n = 0, 1. With these values of n we obtain the nor-

malization constant (5.2) as

N(boson) =
(
1− e−

2πω
~κ

) 1
2

(5.3)

N(fermion) =
(
1 + e−

2πω
~κ

)− 1
2
. (5.4)
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Therefore the normalized physical states of the system for bosons and fermions are,

respectively,

|Ψ >(boson)=
(
1− e−

2πω
~κ

) 1
2
∑
n

e−
πnω
~κ |n(L)

out > ⊗|n
(R)
out >, (5.5)

|Ψ >(fermion)=
(
1 + e−

2πω
~κ

)− 1
2
∑
n

e−
πnω
~κ |n(L)

out > ⊗|n
(R)
out > . (5.6)

From here on our analysis will be only for bosons since for fermions the analysis is

identical. For bosons the density matrix operator of the system is given by,

ρ̂(boson) = |Ψ >(boson)< Ψ|(boson)

=
(
1− e−

2πω
~κ

) ∑
n,m

e−
πnω
~κ e−

πmω
~κ |n(L)

out > ⊗|n
(R)
out >< m

(R)
out |⊗ < m

(L)
out| . (5.7)

Now since, as explained in the previous chapter, the ingoing (L) modes are completely

trapped, they do not contribute to the emission spectrum from the black hole event

horizon. Hence tracing out the ingoing (left) modes we obtain the density matrix for the

outgoing modes,

ρ̂
(R)
(boson) =

(
1− e−

2πω
~κ

) ∑
n

e−
2πnω

~κ |n(R)
out >< n

(R)
out | . (5.8)

Therefore the average number of particles detected at asymptotic infinity is given by,

< n >(boson)= trace(n̂ρ̂
(R)
(boson)) =

(
1− e−

2πω
~κ

) ∑
n

ne−
2πnω

~κ

=
(
1− e−

2πω
~κ

)
(−~κ

2π
)
∂

∂ω

( ∑
n

e−
2πnω

~κ

)
=

(
1− e−

2πω
~κ

)
(−~κ

2π
)
∂

∂ω

( 1

1− e− 2πω
~κ

)
=

1

e
2πω
~κ − 1

(5.9)

where the trace is taken over all |n(R)
out > eigenstates. This is the Bose distribution. Similar

analysis for fermions leads to the Fermi distribution:

< n >(fermion)=
1

e
2πω
~κ + 1

. (5.10)
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Note that both these distributions correspond to a black body spectrum with a tempera-

ture given by the Hawking expression (2.29). Correspondingly, the Hawking flux can be

obtained by integrating the above distribution functions over all ω’s. For fermions it is

given by,

Flux =
1

π

∫ ∞

0

ω dω

e
2πω
~K + 1

=
~2κ2

48π
(5.11)

Similarly, the Hawking flux for bosons can be calculated, leading to the same answer.

5.2 Discussions

We have adopted a novel formulation of the tunneling mechanism which was elaborated

in the previous chapter to find the emission spectrum from the black hole event horizon.

Here the computations were done in terms of the basic modes obtained earlier in Chapter

4. From the density matrix constructed from these modes we were able to directly

reproduce the black body spectrum, for either bosons or fermions, from a black hole with

a temperature corresponding to the standard Hawking expression. We feel that the lack of

such an analysis was a gap in the existing tunneling formulations [22, 23, 72, 73, 74, 75, 77]

which yield only the temperature rather that the actual black body spectrum. Finally,

although our analysis was done for a static spherically symmetric space-time in Einstein

gravity, this can be applied as well for a stationary black hole, for example Kerr-Newman

metric [124] and also for black holes in other gravity theory like Hořava-Lifshit theory

[125].



Chapter 6

Global embedding and

Hawking-Unruh effect

After Hawking’s famous work [4] - radiation of black holes - known as Hawking effect, it

is now well understood that this is related to the event horizon of a black hole. A closely

related effect is the Unruh effect [30], where a similar type of horizon is experienced by

a uniformly accelerated observer on the Minkowski space-time. A unified description

of them was first put forwarded by Deser and Levin [31, 32] which was a sequel to an

earlier attempt [33]. This is called the global embedding Minkowskian space (GEMS)

approach. In this approach, the relevant detector in curved space-time (namely Hawking

detector) and its event horizon map to the Rindler detector in the corresponding flat

higher dimensional embedding space [34, 35] and its event horizon. Then identifying the

acceleration of the Unruh detector, the Unruh temperature can be calculated. Finally,

use of the Tolman relation [36] yields the Hawking temperature. In this picture the Unruh

temperature is interpreted as a local Hawking temperature. Subsequently, this unified

approach to determine the Hawking temperature using the Unruh effect was applied for

several black hole space-times [37, 38, 39, 126]. However the results were confined to

four dimensions and the calculations were done case by case, taking specific black hole

metrics. It was not clear whether the technique was applicable to complicated examples

like the Kerr-Newman metric which lacks spherical symmetry.

The motivation of this chapter is to give a modified presentation of the GEMS ap-

proach that naturally admits generalization. Higher dimensional black holes with different

75
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metrics, including Kerr-Newman, are considered. Using this new embedding, the local

Hawking temperature (Unruh temperature) will be derived. Then the Tolman formula

leads to the Hawking temperature.

We shall first introduce a new global embedding which embeds only the (t− r)-sector

of the curved metric into a flat space. It will be shown that this embedding is enough

to derive the Hawking result using the Deser-Levin approach [31, 32], instead of the full

embedding of the curved space-time. Hence we might as well call this the reduced global

embedding. This is actually motivated from the fact that an N -dimensional black hole

metric effectively reduces to a 2 -dimensional metric (only the (t − r)-sector) near the

event horizon by the dimensional reduction technique [10, 14, 120, 12, 124] (for examples

see Appendix 6.A). Furthermore, this 2-dimensional metric is enough to find the Hawking

quantities if the back scattering effect is ignored. Several spherically symmetric static

metrics will be exemplified. Also, to show the utility of this reduced global embedding, we

shall discuss the most general solution of the Einstein gravity - Kerr-Newman space-time,

whose full global embedding is difficult to find. Since the reduced embedding involves

just the two dimensional (t−r)-sector, black holes in arbitrary dimensions can be treated.

In this sense our approach is valid for any higher dimensional black hole.

The organization of the chapter is as follows. In section 6.1 we shall find the reduced

global embedding of several black hole space-times which are spherically symmetric. In

the next section the power of this approach will be exploited to find the Unruh/Hawking

temperature for the Kerr-Newman black hole. Finally, we shall give our concluding

remarks. One appendix, briefly reviewing dimensional reduction, is also included.

6.1 Reduced global embedding

A unified picture of Hawking effect [4] and Unruh effect [30] was established by the global

embedding of a curved space-time into a higher dimensional flat space [32]. Subsequently,

this unified approach to determine the Hawking temperature using the Unruh effect

was applied for several black hole space-times [37, 38], but usually these are spherically

symmetric. For instance, no discussion on the Kerr-Newman black hole has been given,

because it is difficult to find the full global embedding.
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Since the Hawking effect is governed solely by properties of the event horizon, it is

enough to consider the near horizon theory. As already stated, this is a two dimensional

theory obtained by dimensional reduction of the full theory. Its metric is just the (t− r)-
sector of the original metric.

In the following sub-sections we shall find the global embedding of the near horizon

effective 2-dimensional theory. Then the usual local Hawking temperature will be cal-

culated. Technicalities are considerably simplified and our method is general enough to

include different black hole metrics.

6.1.1 Schwarzschild metric

Near the event horizon the physics is given by just the two dimensional (t− r) -sector of

the full Schwarzschild metric [10] (see also Appendix 6.A):

ds2 = gttdt
2 + grrdr

2 =
(
1− 2M

r

)
dt2 − dr2

1− 2M
r

. (6.1)

It is interesting to see that this can be globally embedded in a flat D = 3 space as,

ds2 = (dz0)2 − (dz1)2 − (dz2)2 (6.2)

by the following relations among the flat and curved coordinates:

z0
out = κ−1

(
1− 2M

r

)1/2

sinh(κt), z1
out = κ−1

(
1− 2M

r

)1/2

cosh(κt),

z0
in = κ−1

(2M

r
− 1

)1/2

cosh(κt), z1
in = κ−1

(2M

r
− 1

)1/2

sinh(κt),

z2 =

∫
dr

(
1 +

rHr
2 + r2

Hr + r3
H

r3

)1/2

, (6.3)

where the surface gravity κ = 1
4M

and the event horizon is located at rH = 2M . The suffix

“in” (“out”) refer to the inside (outside) of the event horizon while variables without any

suffix (like z2) imply that these are valid on both sides of the horizon. We shall follow

these notations throughout the chapter.

Now if a detector moves according to constant r (Hawking detector) outside the

horizon in the curved space, then the detector corresponding to the z coordinates, moves

on the constant z2 plane and it will follow the hyperbolic trajectory(
z1
out

)2

−
(
z0
out

)2

= 16M2
(
1− 2M

r

)
(6.4)
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Such a detector is usually called as the Unruh detector, since the metric corresponding

to z2 constant plane:

ds2
(z0,z1) = (dz0

out)
2 − (dz1

out)
2

=
(
1− 2M

r

)
dt2 − 16M4

r4

(
1− 2M

r

)−1

dr2 (6.5)

is in generalized Rindler form,

ds2
Rind = α2H(r)2dt2 −H ′(r)2dr2 (6.6)

with

H(r) = κ−1
(
1− 2M

r

)1/2

; α = κ . (6.7)

For the generalized Rindler metric (6.6) the acceleration of the Unruh detector is given

by [98],

ã =
1

H(r)
(6.8)

and according to Unruh [30], the accelerated detector will see a thermal spectrum in the

Minkowski vacuum with the local Hawking (Unruh) temperature given by (1.5). This

shows that the Unruh detector is moving in the (z0
out, z

1
out) flat plane with a uniform

acceleration ã = 1
4M

(
1 − 2M

r

)−1/2

and it will see a thermal spectrum in the Minkowski

vacuum with local Hawking temperature given by,

T =
~ã
2π

=
~

8πM

(
1− 2M

r

)−1/2

. (6.9)

So we see that with the help of the reduced global embedding the local Hawking temper-

ature near the horizon can easily be obtained. The same analysis can also be done in the

upcoming discussions, although we shall not mention explicitly. We shall only read off

the acceleration of the Unruh detector by finding the appropriate hyperbolic trajectory

and thereby the local Hawking (Unruh) temperature will be derived.

Now the temperature measured by any observer away from the horizon can be ob-

tained by using the Tolman formula [36] which ensures constancy between the product
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of temperatures and corresponding Tolman factors measured at two different points in

space-time. This formula is given by [36]:

√
gtt T =

√
g0tt T0 (6.10)

where, in this case, the quantities on the left hand side are measured near the hori-

zon whereas those on the right hand side are measured away from the horizon (say at

r0). Since away from the horizon the space-time is given by the full metric, g0tt must

correspond to the dt2 coefficient of the full (four dimensional) metric.

For the case of Schwarzschild metric gtt = 1 − 2M/r, g0tt = 1 − 2M/r0. Now the

Hawking effect is observed at infinity (r0 = ∞), where g0tt = 1. Hence, use of the

Tolman formula (6.10) immediately yields the Hawking temperature:

TH ≡ T0 =
√
gtt T =

~
8πM

. (6.11)

Thus, use of the reduced embedding instead of the embedding of the full metric is sufficient

to get the answer.

6.1.2 Reissner-Nordström metric

In this case, the effective metric near the event horizon is given by [10] (see also appendix

6.A),

ds2 =
(
1− 2M

r
+
Q2

r2

)
dt2 − dr2

1− 2M
r

+ Q2

r2

. (6.12)

This metric can be globally embedded into the D = 4 dimensional flat metric as,

ds2 = (dz0)2 − (dz1)2 − (dz2)2 + (dz3)2 (6.13)

where the coordinate transformations are:

z0
out = κ−1

(
1− 2M

r
+
Q2

r2

)1/2

sinh(κt), z1
out = κ−1

(
1− 2M

r
+
Q2

r2

)1/2

cosh(κt),

z0
in = κ−1

(2M

r
− Q2

r2
− 1

)1/2

cosh(κt), z1
in = κ−1

(2M

r
− Q2

r2
− 1

)1/2

sinh(κt),

z2 =

∫
dr

[
1 +

r2(r+ + r−) + r2
+(r + r+)

r2(r − r−)

]1/2

,

z3 =

∫
dr

[ 4r5
+r−

r4(r+ − r−)2

]1/2

. (6.14)
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Here in this case the surface gravity κ = r+−r−
2r2+

and r± = M ±
√
M2 −Q2. The black

hole event horizon is given by rH = r+. Note that for Q = 0, the above transformations

reduce to the Schwarzschild case (6.3). The Hawking detector moving in the curved space

outside the horizon, following a constant r trajectory, maps to the Unruh detector on the

constant (z2, z3) surface. The trajectory of the Unruh detector is given by

(
z1
out

)2

−
(
z0
out

)2

=
(r+ − r−

2r2
+

)−2(
1− 2M

r
+
Q2

r2

)
=

1

ã2
. (6.15)

This, according to Unruh [30], immediately leads to the local Hawking temperature

T =
~ã
2π

=
~(r+ − r−)

4πr2
+

√
1− 2M/r +Q2/r2

(6.16)

which was also obtained from the full global embedding [32]. Again, since in this case

g0tt = 1− 2M/r0 +Q2/r2
0 which reduces to unity at r0 =∞ and gtt = 1− 2M/r+Q2/r2,

use of Tolman formula (6.10) leads to the standard Hawking temperature

TH ≡ T0 =
√
gtt T =

~(r+ − r−)

4πr2
+

. (6.17)

6.1.3 Schwarzschild-AdS metric

Near the event horizon the relevant effective metric is [10] (see also Appendix 6.A),

ds2 =
(
1− 2M

r
+
r2

R2

)
dt2 − dr2(

1− 2M
r

+ r2

R2

) , (6.18)

where R is related to the cosmological constant Λ = −1/R2. This metric can be globally

embedded in the flat space (6.13) with the following coordinate transformations:

z0
out = κ−1

(
1− 2M

r
+
r2

R2

)1/2

sinh(κt), z1
out = κ−1

(
1− 2M

r
+
r2

R2

)1/2

cosh(κt),

z0
in = κ−1

(2M

r
− r2

R2
− 1

)1/2

cosh(κt), z1
in = κ−1

(2M

r
− r2

R2
− 1

)1/2

sinh(κt),

z2 =

∫
dr

[
1 +

(R3 +Rr2
H

R2 + 3r2
H

)2 r2rH + rr2
H + r3

H

r3(r2 + rrH + r2
H +R2)

]1/2

,

z3 =

∫
dr

[(R4 + 10R2r2
H + 9r4

H)(r2 + rrH + r2
H)

(r2 + rrH + r2
H +R2)(R2 + 3r2

H)2

]1/2

(6.19)
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where the surface gravity κ =
R2+3r2H
2rHR2 and the event horizon rH is given by the largest root

of the equation 1 − 2M
rH

+
r2H
R2 = 0. Note that in the R → ∞ limit these transformations

reduce to those for the Schwarzschild case (6.3). We observe that the Unruh detector

on the (z2, z3) surface (i.e. the Hawking detector moving outside the event horizon on a

constant r surface) follows the hyperbolic trajectory:

(
z1
out

)2

−
(
z0
out

)2

=
(R2 + 3r2

H

2rHR2

)−2(
1− 2M

r
+
r2

R2

)
=

1

ã2
(6.20)

leading to the local Hawking temperature

T =
~ã
2π

=
~κ

2π
(
1− 2M

r
+ r2

R2

)1/2
. (6.21)

This result was obtained earlier [32], but with more technical complexities, from the

embedding of the full metric.

It may be pointed out that for the present case, the observer must be at a finite dis-

tance away from the event horizon, since the space-time is asymptotically AdS. Therefore,

if the observer is far away from the horizon (r0 >> r) where g0tt = 1 − 2M/r0 + r2
0/R

2,

then use of (6.10) immediately leads to the temperature measured at r0:

T0 =
~κ

2π
√

1− 2M/r0 + r2
0/R

2
. (6.22)

Now, this shows that T0 → 0 as r0 →∞; i.e. no Hawking particles are present far from

horizon.

6.2 Kerr-Newman metric

So far we have discussed a unified picture of Unruh and Hawking effects using our reduced

global embedding approach for spherically symmetric metrics, reproducing standard re-

sults. However, our approach was technically simpler since it involved the embedding of

just the two dimensional near horizon metric. Now we shall explore the real power of

this new embedding.
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The utility of the reduced embedding approach comes to the fore for the Kerr-Newman

black hole which is not spherically symmetric. The embedding for the full metric, as far

as we are aware, is not done in the literature.

The effective 2-dimensional metric near the event horizon is given by (6A.14) [12, 124]

(see Appendix 6.A), This metric can be embedded in the following D = 5-dimensional

flat space:

ds2 =
(
dz0

)2

−
(
dz1

)2

−
(
dz2

)2

+
(
dz3

)2

+
(
dz4

)2

, (6.23)

where the coordinate transformations are

z0
out = κ−1

(
1− 2Mr

r2 + a2
+

Q2

r2 + a2

)1/2

sinh(κt),

z1
out = κ−1

(
1− 2Mr

r2 + a2
+

Q2

r2 + a2

)1/2

cosh(κt),

z0
in = κ−1

( 2Mr

r2 + a2
− Q2

r2 + a2
− 1

)1/2

cosh(κt),

z1
in = κ−1

( 2Mr

r2 + a2
− Q2

r2 + a2
− 1

)1/2

sinh(κt),

z2 =

∫
dr

[
1 +

(r2 + a2)(r+ + r−) + r2
+(r + r+)

(r2 + a2)(r − r−)

]1/2

,

z3 =

∫
dr

[ 4r5
+r−

(r2 + a2)2(r+ − r−)2

]1/2

,

z4 =

∫
dra

[ r+ + r−
(a2 + r2

−)(r− − r)
+

4(a2 + r2
+)(a2 − r+r− + (r+ + r−)r)

(r+ − r−)2(a2 + r2)3

+
4r+r−(a2 + 2r2

+)

(r+ − r−)2(a2 + r2)2
+
rr− − a2 + r+(r + r−)

(a2 + r2
−)(a2 + r2)

]1/2

. (6.24)

Here the surface gravity κ = r+−r−
2(r2++a2)

. For Q = 0, a = 0, as expected, the above transfor-

mations reduce to the Schwarzschild case (6.3) while only for a = 0 these reduce to the

Reissner-Nordström case (6.14).

As before, the trajectory adopted by the Unruh detector on the constant (z2, z3, z4)

surface corresponding to the Hawking detector on the constant r surface is given by the

hyperbolic form,(
z1
out

)2

−
(
z0
out

)2

= κ−2
(
1− 2Mr

r2 + a2
+

Q2

r2 + a2

)
=

1

ã2
. (6.25)
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Hence the Unruh or local Hawking temperature is

T =
~ã
2π

=
~κ

2π

√(
1− 2Mr

r2+a2 + Q2

r2+a2

) . (6.26)

Finally, since gtt = 1 − 2Mr
r2+a2 + Q2

r2+a2 (corresponding to the near horizon reduced two

dimensional metric) and g0tt =
r20−2Mr0+a2+Q2−a2sin2θ

r20+a2cos2θ
(corresponding to the full four di-

mensional metric), use of the Tolman relation (6.10) leads to the Hawking temperature

TH ≡ T0 =

√
gtt√

(g0tt)r0→∞
T =

~κ
2π

=
~(r+ − r−)

4π(r2
+ + a2)

, (6.27)

which is the well known result [12].

6.3 Conclusion

We provided a new approach to the study of Hawking/Unruh effects including their

unification, initiated in [31, 32, 33], popularly known as global embedding Minkowskian

space-time (GEMS). Contrary to the usual formulation [31, 32, 33, 37, 38, 39], the full

embedding was avoided. Rather, we required the embedding of just the two dimensional

(t − r)-sector of the theory. This was a consequence of the fact that the effective near

horizon theory is basically two dimensional. Only near horizon theory is significant since

Hawking/Unruh effects are governed solely by properties of the event horizon.

This two dimensional embedding ensued remarkable technical simplifications whereby

the treatment of more general black holes (e.g. those lacking spherical symmetry like the

Kerr-Newman) was feasible. Also, black holes in any dimensions were automatically

considered since the embedding just required the (t− r)-sector.





Appendix

6.A Dimensional reduction technique

Dimensional reduction has been discussed in various contexts in the literature [10, 120,

12, 124]. Here we briefly summarise the technique and findings relevant for our study.

Two specific examples are considered.

Spherically symmetric static metric:

Let us consider a spherically symmetric static metric

ds2 = f(r)dt2 − dr2

f(r)
− r2(dθ2 + sin2θdφ2) (6A.1)

whose event horizon is given by f(r = rH) = 0. Now in terms of the tortoise coordinate

(2.20) the above metric takes the following form

ds2 = f(r(r∗))
(
dt2 − dr∗2

)
− r2(r∗)(dθ2 + sin2θdφ2) (6A.2)

Then the free action for massless scalar field under this background is given by

A = −
∫
d4x
√
−g Φ∇µ∇µΦ

= −
∫
dtdr∗dθdφ sinθ Φ

[
r2(r∗)(∂2

t − ∂2
r∗)− 2r(r∗)f(r(r∗))∂r∗

]
Φ

−
∫
dtdr∗dθdφ f(r(r∗))sinθ ΦL2Φ, (6A.3)

where

L2 = − 1

sin2θ
∂2
φ − cotθ∂θ − ∂2

θ . (6A.4)
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Substituting the partial wave decomposition for Φ

Φ(t, r∗, θ, φ) =
∑
l,n

φln(t, r
∗)Yln(θ, φ) (6A.5)

in (6A.3) and using the eigenvalue equation L2Yln(θ, φ) = l(l+1)Yln(θ, φ) followed by the

orthonormality condition,
∫
dθdφ sinθ Yl′n′Yln = δl′lδn′n, we obtain,

A = −
∑
l,n

∫
dtdr∗r2(r∗)φln

[
∂2
t − ∂2

r∗

]
φln

+
∑
l,n

∫
dtdr∗r2(r∗)φlnf(r(r∗))

[ l(l + 1)

r2(r∗)
+

1

r(r∗)
∂rf(r)

]
φln. (6A.6)

Now near the horizon (r → rH), f(r) → 0, and hence the above action reduces to the

following form:

A ' −
∑
l,n

∫
dtdr∗r2

H(r∗)φln

[
∂2
t − ∂2

r∗

]
φln. (6A.7)

Transforming back to the original coordinates (t, r), yields

A ' −
∑
l,n

∫
dtdrr2

Hφln

[ 1

f(r)
∂2
t − ∂r(f∂r)

]
φln. (6A.8)

It must be noted that the above action is the original action for the infinite collection of

free scalar fields under the metric [12],

ds2 = f(r)dt2 − dr2

f(r)
, (6A.9)

which is just the (t − r)-sector of the (3 + 1)-dimensional metric (6A.1). It is simple to

extend this analysis for arbitrary dimensions [127]. The effective theory is again given by

the metric (6A.9).

Kerr-Newman metric:

The most general black hole in four dimensional Einstein theory is given by the Kerr-

Newman metric,

ds2 =
∆− a2 sin2 θ

Σ
dt2 +

2a sin2 θ

Σ
(r2 + a2 −∆)dtdϕ

− a2∆ sin2 θ − (r2 + a2)2

Σ
sin2 θdϕ2 − Σ

∆
dr2 − Σdθ2 (6A.10)
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where

a ≡ J

M
; Σ ≡ r2 + a2 cos2 θ; ∆ ≡ r2 − 2Mr + a2 +Q2 = (r − r+)(r − r−),

r± = M ±
√
M2 − a2 −Q2, (6A.11)

while M,J,Q and r+(−) are the mass, angular momentum, electrical charge and the outer

(inner) horizon of the Kerr-Newman black hole, respectively. The event horizon is located

at r = r+.

Proceeding in a similar way as above, the action for a massless complex scalar field,

in the near horizon limit, reduces to the following form [12, 124]:

A = −
∫
d4x
√
−gΦ∗(∇µ + iAµ)(∇µ − iAµ)Φ

= −
∑
l,n

∫
dtdr(r2 + a2)φ∗ln

[r2 + a2

∆

(
∂t − iAt

)2

− ∂r
∆

r2 + a2
∂r

]
φln, (6A.12)

where

At = −eV (r)− nΩ(r); V (r) =
Qr

r2 + a2
,Ω(r) =

a

r2 + a2
. (6A.13)

Here e is the charge of the scalar field. This shows that each partial wave mode of the

fields can be described near the horizon as a (1+1) dimensional complex scalar field with

two U(1) gauge potentials V (r), Ω(r) and the dilaton field ψ = r2 + a2. It should be

noted that the above action for each l, n can also be obtained from the complex scalar

field action in the background of the metric

ds2 = F (r)dt2 − dr2

F (r)
; F (r) =

∆

r2 + a2
(6A.14)

with the dilaton field ψ = r2 + a2. Thus, the effective near horizon theory is two dimen-

sional with a metric given by (6A.14). Although here we have presented the dimensional

reduction technique for the 4 dimensional case, it can also be generalized to higher di-

mensional black holes. In that case one again gets a two dimensional (t− r) metric near

the event horizon. For example see [128].





Chapter 7

Quantum tunneling and black hole

spectroscopy

Since the birth of Einstein’s theory of gravitation, black holes have been one of the main

topics that attracted the attention and consumed a big part of the working time of the

scientific community. In particular, the computation of black hole entropy in the semi-

classical and furthermore in the quantum regime has been a very difficult and (in its full

extent) unsolved problem that has created a lot of controversy. A closely related issue is

the spectrum of this entropy as well as that of the horizon area. This will be our main

concern.

Bekenstein was the first to show that there is a lower bound (quantum) in the increase

of the area of the black hole horizon when a neutral (test) particle is absorbed [2]

(∆A)min = 8πl2pl (7.1)

where we use gravitational units, i.e. G = c = 1, and lpl = (G~/c3)1/2 is the Planck

length. Later on, Hod considered the case of a charged particle assimilated by a Reissner-

Nordström black hole and derived a smaller bound for the increase of the black hole area

[129]

(∆A)min = 4l2pl . (7.2)

At the same time, a new research direction was pursued; namely the derivation of the

area as well as the entropy spectrum of black holes utilizing the quasinormal modes of
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black holes [44] 1. In this framework, the result obtained is of the form

(∆A)min = 4l2pl ln k (7.3)

where k = 3. A similar expression was first put forward by Bekenstein and Mukhanov

[131] who employed the “bit counting” process. However in that case k is equal to 2.

Such a spectrum can also be derived in the context of quantum geometrodynamics [132].

Furthermore, using this result one can find the corrections to entropy consistent with

Gibbs’ paradox [133].

Another significant attempt was to fix the Immirzi parameter in the framework of

Loop Quantum Gravity [45] but it was unsuccessful [46]. Furthermore, contrary to Hod’s

statement for a uniformly spaced area spectrum of generic Kerr-Newman black holes, it

was proven that the area spacing of Kerr black hole is not equidistant [134]. However,

a new interpretation for the black hole quasinormal modes was proposed [48] which

rejuvenated the interest in this direction. In this framework the area spectrum is evenly

spaced and the area quantum for the Schwarschild as well as for the Kerr black hole

is given by (7.1) [49]. While this is in agreement with the old result of Bekenstein, it

disagrees with (7.2).

In this chapter, we will use a modified version of the tunneling mechanism, discussed

in chapter 4, to derive the entropy-area spectrum of a black hole. In this formalism, as

explained earlier, a virtual pair of particles is produced just inside the black hole. One

member of this pair is trapped inside the black hole while the other member can quantum

mechanically tunnel through the horizon. This is ultimately observed at infinity, giving

rise to the Hawking flux. Now the uncertainty in the energy of the emitted particle is

calculated from a simple quantum mechanical point of view. Then exploiting information

theory (entropy as lack of information) and the first law of thermodynamics, we infer that

the entropy spectrum is evenly spaced for both Einstein’s gravity as well as Einstein-

Gauss-Bonnet gravity. Now, since in Einstein gravity, entropy is proportional to horizon

area of black hole, the area spectrum is also evenly spaced and the spacing is shown to

be exactly identical with one computed by Hod [129] who studied the assimilation of

charged particle by a Reissner-Nordström black hole. On the contrary, in more general

1For some works on this direction see, for instance, [130] and references therein.
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theories like Einstein-Gauss-Bonnet gravity, the entropy is not proportional to the area

and therefore area spacing is not equidistant. This also agrees with recent conclusions

[50, 135].

The organization of the chapter goes as follows. In section 7.1, we briefly review the

results of dimensional reduction presented earlier in Appendix 6.A which will be used in

this chapter. In section 7.2, we compute the entropy and area spectrum of black hole

solutions of both Einstein gravity and Einstein-Gauss-Bonnet gravity. Finally, section

7.3 is devoted to a brief summary of our results and concluding remarks.

7.1 Near horizon modes

According to the no hair theorem, collapse leads to a black hole endowed with mass,

charge, angular momentum and no other free parameters. The most general black hole

in four dimensional Einstein theory is given by the Kerr-Newman metric (6A.10).

Now considering complex scalar fields in the Kerr-Newmann black hole background

and then substituting the partial wave decomposition of the scalar field in terms of

spherical harmonics it has been shown in Appendix 6.A that near the horizon the action

reduces to an effective 2-dimensional action (6A.12) for free complex scalar field. From

(6A.12) one can easily derive the equation of motion of the field φlm for the l = 0 mode.

We will denote this mode as φ. This equation is given by the Klein-Gordon equation:[ 1

F (r)
(∂t − iAt)2 − F (r)∂2

r − F ′(r)∂r
]
φ = 0 . (7.4)

Now proceeding in a similar way as presented in chapter 4, we obtain the relations

between the modes defined inside and outside the black hole event horizon, which are

given by (4.35) and (4.36). In this case, the surface gravity κ is defined by,

κ =
1

2

dF (r)

dr

∣∣∣
r=r+

(7.5)

and the energy of the particle (ω) as seen from an asymptotic observer is identified as,

ω = E − eV (r+)−mΩ(r+). (7.6)
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Here E is the conserved quantity corresponding to a timelike Killing vector (1, 0, 0, 0).

The other variables V (r+) and Ω(r+) are the electric potential and the angular velocity

calculated on the horizon.

The same analysis also goes through for a D-dimensional spherically symmetric static

black hole which is a solution for Einstein-Gauss-Bonnet theory [136]:

ds2 = F (r)dt2 − dr2

F (r)
− r2dΩ2

(D−2). (7.7)

Here F (r) is given by

F (r) = 1 +
r2

2α

[
1−

(
1 +

4αω̄

rD−1

) 1
2
]

(7.8)

with

α = (D − 3)(D − 4)αGB (7.9)

ω̄ =
16π

(D − 2)ΣD−2

M (7.10)

where αGB, ΣD−2 and M are the coupling constant for the Gauss-Bonnet term in the

action, the volume of unit (D−2) sphere and the ADM mass, respectively. Approaching in

a similar manner for the dimensional reduction near the horizon, as discussed in Appendix

6.A (also see [127]) for arbitrary dimensional case), one can show that the physics can

be effectively described by the 2-dimensional form (6A.14). Therefore, in the Einstein-

Gauss-Bonnet theory one will obtain the same transformations, namely equations (4.35)

and (4.36), between the inside and outside modes.

In the analysis to follow, using the aforementioned transformations, i.e. equations

(4.35) and (4.36), we will discuss about the spectroscopy of the entropy and area of black

holes.

7.2 Entropy and area spectrum

In this section we will derive the spectrum for the entropy as well as the area of the black

hole defined both in Einstein and Einstein-Gauss-Bonnet gravity. It has already been

mentioned that the pair production occurs inside the horizon. The relevant modes are
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φ
(L)
in and φ

(R)
in . It has also been shown in chapter 4 that the left mode is trapped inside

the black hole while the right mode can tunnel through the horizon which is observed at

asymptotic infinity. Therefore, the average value of ω will be computed as

< ω >=

∫ ∞

0

(
φ

(R)
in

)∗
ωφ

(R)
in dω∫ ∞

0

(
φ

(R)
in

)∗
φ

(R)
in dω

. (7.11)

It should be stressed that the above definition is unique since the pair production occurs

inside the black hole and it is the right moving mode that eventually escapes (tunnels)

through the horizon.

To compute this expression it is important to recall that the observer is located outside

the event horizon. Therefore it is essential to recast the “in” expressions into their

corresponding “out” expressions using the map (4.35) and then perform the integrations.

Consequently, using (4.35) in the above we will obtain the average energy of the particle,

as seen by the external observer. This is given by,

< ω > =

∫ ∞

0

e−
πω
~κ

(
φ

(R)
out

)∗
ωe−

πω
~κ φ

(R)
outdω∫ ∞

0

e−
πω
~κ

(
φ

(R)
out

)∗
e−

πω
~κ φ

(R)
outdω

=

∫ ∞

0

ωe−βωdω∫ ∞

0

e−βωdω

=

− ∂

∂β

(∫ ∞

0

e−βωdω

)
∫ ∞

0

e−βωdω

= β−1 (7.12)

where β is the inverse Hawking temperature

β =
2π

~κ
=

1

TH
. (7.13)

In a similar way one can compute the average squared energy of the particle detected by

the asymptotic observer

< ω2 > =

∫ ∞

0

e−
πω
~κ

(
φ

(R)
out

)∗
ω2e−

πω
~κ φ

(R)
outdω∫ ∞

0

e−
πω
~κ

(
φ

(R)
out

)∗
e−

πω
~κ φ

(R)
outdω

=
2

β2
. (7.14)
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Now it is straightforward to evaluate the uncertainty, employing equations (7.12) and

(7.14), in the detected energy ω

(∆ω) =
√
<ω2> − <ω>2 = β−1 = TH (7.15)

which is nothing but the Hawking temperature TH . Hence the characteristic frequency

of the outgoing mode is given by,

∆f =
∆ω

~
=
TH
~
. (7.16)

Now the uncertainty (7.15) in ω can be seen as the lack of information in energy of the

black hole due to the particle emission. This is because ω is the effective energy defined

in (7.6). Also, since in information theory the entropy is lack of information, then the

first law of black hole mechanics can be exploited to connect these quantities,

Sbh =

∫
∆ω

TH
. (7.17)

Substituting the value of TH from (7.16) in the above we obtain

Sbh =
1

~

∫
∆ω

∆f
. (7.18)

Now according to the Bohr-Sommerfeld quantization rule∫
∆ω

∆f
= n~ (7.19)

where n = 1, 2, 3..... Hence, combining (7.18) and (7.19), we can immediately infer that

the entropy is quantized and the spectrum is given by

Sbh = n. (7.20)

This shows that the entropy of the black hole is quantized in units of the identity, ∆Sbh =

(n+1)−n = 1. Thus the corresponding spectrum is equidistant for both Einstein as well

as Einstein-Gauss-Bonnet theory. Moreover, since the entropy of a black hole in Einstein

theory is given by the Bekenstein-Hawking formula,

Sbh =
A

4l2pl
. (7.21)
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the area spectrum is evenly spaced and given by,

An = 4l2pl n (7.22)

with n = 1, 2, 3, . . . . Consequently, the area of the black hole horizon is also quantized

with the area quantum given by,

∆A = 4l2pl . (7.23)

A couple of comments are in order here. First, in Einstein gravity, the area quantum

is universal in the sense that it is independent of the black hole parameters. This uni-

versality was also derived in the context of a new interpretation of quasinormal moles of

black holes [48, 49]. Second, the same value was also obtained earlier by Hod by consid-

ering the Heisenberg uncertainty principle and Schwinger-type charge emission process

[129].

On the contrary, in Einstein-Gauss-Bonnet theory, the black hole entropy is given by

Sbh =
A

4

[
1 + 2α

(D − 2

D − 4

)( A

ΣD−2

)− 2
D−2

]
(7.24)

which shows that entropy is not proportional to area. Therefore in this case the area

spacing is not equidistant. The explicit form of the area spectrum is not be given here

since (7.24) does not have any analytic solution for A in terms of Sbh. This is compatible

with recent findings [50, 135].

7.3 Discussions

We have calculated the entropy and area spectra of a black hole which is a solution of

either Einstein or Einstein-Gauss-Bonnet (EGB) theory. The computations were pursued

in the framework of the tunneling method as reformulated in chapter 4. In both cases

entropy spectrum is equispaced and the quantum of spacing is identical. Since in Einstein

gravity, the entropy is proportional to the horizon area, the spectrum for the correspond-

ing area is also equally spaced. The area quantum obtained here is equal to 4l2pl. This

exactly reproduces the result of Hod who studied the assimilation of a charged particle
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by a Reissner-Nordström black hole [129]. In addition, the area quantum 4l2pl is smaller

than that given by Bekenstein for neutral particles [2] as well as the one computed in the

context of black hole quasinormal modes [48, 49].

Furthermore, for the computation of the area quantum obtained here, concepts from

statistical physics, quantum mechanics and black hole physics were combined. Therefore,

it seems that the result reached in our analysis is a better approximation (since a quantum

theory of gravity which will give a definite answer to the quantization of black hole

entropy/area is still lacking) than those existing in the literature. Finally, the equality

between our result and that of Hod for the area quantum may be due to the similarity

between the tunneling mechanism and the Schwinger mechanism (for a further discussion

on this similarity see [22, 137]). On the other hand in Einstein - Gauss - Bonnet gravity,

since entropy is not proportional to area, the spectrum of area is not evenly spaced.

Hence, for Einstein - Gauss - Bonnet gravity, the notion of the quantum of entropy is

more natural than the quantum of area. However, one should mention that since our

calculations are based on a semi-classical approximation, the spacing obtained here is

valid for large values of n and for s-wave (l = 0 mode). This method is general enough

to discuss entropy and area spectra for the black holes in other type of gravity theories

like Hořava-Lifshitz gravity [125].



Chapter 8

Statistical origin of gravity

There are numerous evidences [2, 4, 3] which show that gravity and thermodynamics are

closely connected to each other. Recently, there has been a growing consensus [52, 53, 138]

that gravity need not be interpreted as a fundamental force, rather it is an emergent

phenomenon just like thermodynamics and hydrodynamics. The fundamental role of

gravity is replaced by thermodynamical interpretations leading to similar or equivalent

results. Nevertheless, understanding the entropic or thermodynamic origin of gravity is

far from complete since the arguments are more heuristic than concrete and depend upon

specific ansatz or assumptions.

In this chapter, using certain basic results derived in the earlier chapters (also see

[58, 61]) in the context of tunneling mechanism, we are able to provide a statistical

interpretation of gravity. The starting point is the standard definition of entropy given

in statistical mechanics. We show that this entropy gets identified with the action for

gravity. Consequently the Einstein equations obtained by a variational principle involving

the action can be equivalently obtained by an extremisation of the entropy.

Furthermore, for a black hole with stationary metric we derive the relation Sbh =

E/2TH , connecting the entropy (Sbh) with the Hawking temperature (TH) and energy

(E). We prove that this energy corresponds to Komar’s expression [139, 140]. Using

this fact we show that the relation Sbh = E/2TH is also compatible with the generalised

Smarr formula [141, 3, 8]. We mention that this relation was also obtained and discussed

in [142, 143].
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8.1 Partition function and the relation Sbh = E
2TH

We start with the partition function for the space-time with matter field [8],

Z =

∫
D[g,Φ] eiI[g,Φ] (8.1)

where I[g,Φ] is the action representing the whole system and D[g,Φ] is the measure of

all field configurations (g,Φ). Now consider small fluctuations in the metric (g) and the

matter field (Φ) in the following form:

g = g0 + g̃; Φ = Φ0 + Φ̃ (8.2)

where g0 and Φ0 are the stable background fields satisfying the periodicity conditions and

which extremise the action. So they satisfy the classical field equations. Whereas g̃ and

Φ̃, the fluctuations around these classical values, are very very small. Expanding I[g,Φ]

around (g0,Φ0) we obtain

I[g,Φ] = I[g0,Φ0] + I2[g̃] + I2[Φ̃] + higher order terms. (8.3)

The dominant contribution to the path integral (8.1) comes from fields that are near the

background fields (g0,Φ0). Hence one can neglect all the higher order terms. The first

term I[g0,Φ0] leads to the usual Einstein equations and gives rise to the standard area

law [8]. On the other hand the second and third terms give the contributions of thermal

gravitation and matter quanta respectively on the background contribution I[g0,Φ0].

They lead to the (logarithmic) corrections to the usual area law [144]. Here, since we

want to confine ourself within the usual semi-classical regime, we shall neglect these

quadratic terms for the subsequent analysis. Therefore, keeping only the term I[g0,Φ0]

in (8.3) we obtain the partition function (8.1) as [8],

Z ' eiI[g0,Φ0]. (8.4)

Therefore, adopting the standard definition of entropy in statistical mechanics,

Sbh = lnZ +
E

TH
(8.5)
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and using (8.4), the entropy of the gravitating system is given by 1,

Sbh = iI[g0,Φ0] +
E

TH
(8.6)

where E and TH are respectively the energy and temperature of the system.

It may be pointed out that it is possible to interpret (8.4) as defining the partition

function of an emergent theory without specifying the detailed configuration of the grav-

itating system. The validity of such an interpretation is borne out by the subsequent

analysis.

In order to get an explicit expression for E, let us consider a specific system - a black

hole. Now thermodynamics of a black hole is universally governed by its properties near

the event horizon. It is also well understood that near the event horizon the effective

theory becomes two dimensional whose metric is given by the two dimensional (t −
r)- sector of the original metric [120, 10]. Correspondingly, the left (L) and right (R)

moving (holomorphic) modes are obtained by solving the appropriate field equation using

the geometrical (WKB) approximation. Furthermore, the modes inside and outside the

horizon are related by the transformations (4.35) and (4.36) [58, 61]. Concentrating on

the modes inside the horizon, the L mode gets trapped while the R mode tunnels through

the horizon and is eventually observed at asymptotic infinity as Hawking radiation [58, 61]

2. The average value of the energy, measured from outside, is given by (7.12). Therefore

if we consider that the energy E of the system is encoded near the horizon and the total

number of pairs created is n among which this energy is distributed, then we must have,

E = nTH (8.7)

where only the R mode of the pair is significant.

Now to proceed further, it must be realised that the effective two dimensional curved

metric can always be embedded in a flat space which has exactly two space-like coordi-

nates. This is a consequence of a modification in the original GEMS (globally embedding

in Minkowskian space) approach of [32] and has been elaborated by us in Chapter 6.

1In this chapter we have chosen units such that kB = G = ~ = c = 1.

2For a unified treatment of these issues, see [145]
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Hence we may associate each R mode with two degrees of freedom. Then the total num-

ber of degrees of freedom for n number of R modes is N = 2n. Hence, from (8.7), we

obtain the energy of the system as

E =
1

2
NTH . (8.8)

As a side remark, it may be noted that (8.8) can be interpreted as a consequence of the

usual law of equipartition of energy. For instance, if we consider that the energy E is

distributed equally over each degree of freedom, then (8.8) implies that each degree of

freedom should contain an energy equal to TH/2, which is nothing but the equipartition

law of energy. The fact that the energy is equally distributed among the degrees of

freedom may be understood from the symmetry of two space-like coordinates (z1 ←→ z2)

such that the metric is unchanged [60] (see chapter 6). In our subsequent analysis,

however, we only require (8.8) rather than its interpretation as the law of equipartition

of energy.

Now since there are N number of degrees of freedom in which all the information is

encoded, the entropy (Sbh) of the system must be proportional to N . Hence using (8.6)

we obtain

N = N0Sbh = N0(iI[g0,Φ0] +
E

TH
), (8.9)

where N0 is a proportionality constant, which will be determined later. Substituting the

value of N from (8.8) in (8.9) we obtain the expression for the energy of the system as

E =
N0

2−N0

iTHI[g0,Φ0]. (8.10)

This shows that in the absence of any fluctuations, the energy of a system is actually

given by the classical action representing the system. In the following we shall use this

expression to find the energy of a stationary black hole. Before that let us substitute

the value of I[g0,Φ0] from (8.10) in (8.6). This immediately leads to a simple relation

between the entropy, temperature and energy of the black hole:

Sbh =
2E

N0TH
. (8.11)
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Now in order to fix the value of “N0” we consider the simplest example, the Schwarzschild

black hole for which the entropy, energy and temperature are given by,

Sbh =
A

4
= 4πM2, E = M, TH =

1

8πM
, (8.12)

where “M” is the mass of the black hole. Substitution of these in (8.11) leads to N0 = 4.

At this point we want to make a comment on the value of N0. According to standard

statistical mechanics one would have thought that 1/N0 = ln c, where c is an integer.

Whereas to keep our analysis consistent with semi-classical area law, we obtained c = e1/4,

which is clearly not an integer. Indeed, any departure from this value of N0 would

invalidate the semi-classical area law and hence our analysis. Such a disparity is not

peculiar to our approach and has also occurred elsewhere [48, 146]. This may be due to the

fact that our analysis is confined within the semi-classical regime, which is valid for large

degrees of freedom. In this regime, it is not obvious that a semi-classical computation

can reproduce c to be an integer. Furthermore, the above value of N0 is still valid even

for very small number of degrees of freedom (N), where this semi-classical calculation is

unjustified. This also happens in the semi-classical computation of the entropy spectrum

of a black hole [48]. The entropy spectrum is found there to be Sbh = 2πN rather than

Sbh = N ln c and this discrepancy is identified with the semi-classical approximation. A

possible way to resolve such disagreement from standard statistical mechanics may be

the full quantum theoretical computation of the number of microstates which is beyond

the scope of the present chapter.

Finally, putting back N0 = 4 in (8.11) we obtain,

Sbh =
E

2TH
. (8.13)

Such a relation was later obtained by us for higher dimensional Einstein gravity where E

is the Komar conserved quantity [147]. Before discussing the significance and implications

of this relation, we observe that substituting the value of E from (8.13) in (8.10) with

N0 = 4, we obtain

Sbh = −iI[g0,Φ0]. (8.14)

Consequently, extremization of entropy leads to Einstein’s equations.
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8.2 Identification of E in Einstein’s gravity

The relation (8.13) is significant for various reasons which will become progressively clear.

It is valid for all black hole solutions in Einstein gravity with appropriate identifications

consistent with the area law. Here Sbh and TH are easy to identify. These are, respectively,

the entropy and Hawking temperature of the black hole. Since energy is one of the most

diversely defined entities in general theory of relativity, special care is needed to identify

E in (8.13). We now show that this E corresponds to Komar’s definition [139, 140].

Simplifying (8.10) using N0 = 4 and TH = κ/2π, we obtain,

E = −iκI[g0,Φ0]

π
. (8.15)

The classical action I[g0,Φ0] has already been calculated in [8]. The result is,

I[g0,Φ0] = 2iπκ−1
[ 1

16π

∫
Σ

RξadΣa +

∫
Σ

(Tab −
1

2
Tgab)ξ

bdΣa

− 1

16π

∫
H
εabcd∇cξd

]
, (8.16)

where ξa∂/∂xa = ∂/∂t is the time translation Killing vector and Σ is the space-like

hypersurface whose boundary is given by H. Here Tab is the energy-momentum tensor of

the matter field whose trace is given by T . Now for a stationary geometry, ξa∇aR = 0

[98]. Hence for a volume A, we have

0 =

∫
A
ξa∇aRdA =

∫
A

[
∇a(ξ

aR)− (∇aξ
a)R

]
dA =

∫
A
∇a(ξ

aR)dA (8.17)

where in the last step the Killing equation ∇aξb +∇bξa = 0 has been used. Finally, the

Gauss theorem yields,∫
Σ

ξaRdΣa = 0. (8.18)

Using this in (8.16) we obtain,

I[g0,Φ0] = 2iπκ−1
[ ∫

Σ

(Tab −
1

2
Tgab)ξ

bdΣa − 1

16π

∫
H
εabcd∇cξd

]
. (8.19)

Substituting this in (8.15) we obtain the expression for the energy of the gravitating

system as

E = 2

∫
Σ

(Tab −
1

2
Tgab)ξ

bdΣa − 1

8π

∫
H
εabcd∇cξd (8.20)
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which is the Komar expression for energy [139, 140] corresponding to the time translation

Killing vector. Similarly, if there is a rotational Killing vector, then there must be a

Komar expression for rotational energy [98, 148] and the total energy will be their sum.

Incidentally, (8.13) was obtained earlier in [142] for static space-time and its implica-

tions were discussed in [143]. However a specific ‘ansatz’ for entropy compatible with the

area law was taken and, more importantly, the Komar energy expression was explicitly

used as an input in the derivation. Hence our analysis is different, since we do not invoke

any ansatz for the entropy; neither is the Komar expression required at any stage. Rather

we prove its occurence in the relation (8.13).

As an explicit check of (8.13) for different black hole solutions, we consider a couple

of examples. Take the Reissner-Nordström (RN) black hole. In this case the entropy and

temperature are given by,

Sbh = πr2
+, TH =

r+ − r−
4πr2

+

; r± = M ±
√
M2 −Q2 (8.21)

where “Q” is the charge of the black hole. Substitution of these in (8.13) yields,

E = M − Q2

r+
, (8.22)

which is the Komar energy of RN black hole [86].

Next we consider the Kerr black hole for which the entropy and temperature are

respectively,

Sbh = π(r2
+ + a2), TH =

r+ − r−
4π(r2

+ + a2)
;

r± = M ±
√
M2 − a2, a =

J

M
. (8.23)

Here “J” is the angular momentum of the black hole. Substituting (8.23) in (8.13) we

obtain,

E = M − 2JΩ (8.24)

which is the total Komar energy for Kerr black hole [149, 86]. Here Ω = a
r2++a2 is the

angular velocity at the event horizon r = r+.
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We thus find that, in all cases where Sbh, E, T are known, they satisfy (8.13) apart

from the area law. In fact, it is possible to take (8.13) as the defining relation for the

Komar energy. Such an instance is provided by the Kerr-Newman black hole. The entropy

and temperature of Kerr-Newman black hole are given by,

Sbh = π(r2
+ + a2); TH =

r+ − r−
4π(r2

+ + a2)
(8.25)

where

r± = M ±
√
M2 −Q2 − a2; a =

J

M
. (8.26)

Now substituting (8.25) in (8.13) and then using (8.26) we obtain the total Komar energy

of Kerr-Newman black hole:

E =
√
M2 −Q2 − a2 = M − Q2

r+
− 2JΩ

(
1− Q2

2Mr+

)
= M −QV − 2JΩ, (8.27)

where Ω = a
r2++a2 is the angular velocity at the event horizon and V = Q

r+
− QJΩ

Mr+
. This

value exactly matches with the direct evaluations of Komar expressions for energies [148,

149, 86]. It is also reassuring to note that the definition of M following from (8.13) and

(8.27) reproduces the generalised Smarr formula [141, 3, 8],

M

2
=
κA

8π
+
V Q

2
+ ΩJ. (8.28)

8.3 Discussions

In this chapter we have further clarified the possibility of considering gravity as an emer-

gent phenomenon. Taking the standard definition of entropy from statistical mechanics

we were able to show the equivalence of entropy with the action. Consequently, extrem-

isation of the action leading to Einstein’s equations is equivalent to the extremisation of

the entropy. We derived the relation Sbh = E/2TH for stationary black holes with Sbh

and TH being the entropy and Hawking temperature. The nature of energy E appearing

in this relation was clarified. It was proved to be Komar’s expression valid for stationary

asymptotically flat space-time. An explicit check of Sbh = E/2TH was done for all black

hole solutions of Einstein gravity. This relation was also seen to reproduce the generalised
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mass formula of Smarr [141, 3, 8]. In this sense the Smarr formula can be interpreted as

a thermodynamic relation further illuminating the emergent nature of gravity. As a final

remark we feel that although our results were derived for Einstein gravity, the methods

are general enough to include other possibilities like higher order theories.





Chapter 9

Conclusions

The motivation of this thesis was to study certain field theory aspects of black holes,

with particular emphasis on the Hawking effect, using various semi-classical techniques.

We now summarize the results obtained in last seven chapters and briefly comment on

future prospects.

In the second chapter, we gave a general framework of tunneling mechanism for a

static, spherically symmetric black hole metric. Both Hamilton - Jacobi and radial null

geodesic approaches were elaborated. The tunneling rate was found to be the Boltzmann

factor. Then Hawking’s expression for the temperature of a black hole - proportional to

surface gravity - was derived.

In the third chapter, we provided an application of this general framework for null

geodesic method. Back reaction as well as noncommutative effects in the space-time were

incorporated. Here the main motivation was to find the modifications to the thermody-

namic entities, such as temperature, entropy etc.

First the back reaction, which is just the effect of space-time fluctuations, was con-

sidered. It was shown in [63] that even in the presence of this effect the metric remains

in the static, spherically symmetric form, but with a modified surface gravity. So it was

possible to use the method elaborated in the previous chapter. In this case, we showed

the following results:

• The temperature was modified and also the entropy received corrections. The
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leading order correction was found to be the logarithmic of area while the non-

leading corrections are just the inverse powers of area.

• The coefficient of the logarithmic term was related to the trace anomaly of energy-

momentum tensor.

Both these results agreed with the earlier findings [63, 64] by other methods.

We also discussed the effect of noncommutativity in addition to the back reaction

effect in the black hole space-time. Here again the corrections to the thermodynamic

quantities were given. For consistency, we showed that in the proper limit the usual

(commutative space-time) results were recovered.

In the fourth chapter we discussed another method, the chiral anomaly method, to

derive the fluxes of Hawking radiation. Here the chiral anomaly expressions were obtained

from the non-chiral theory by using the trace anomaly and the chirality conditions. Then

the Hawking flux was derived following the path prescribed in [16, 17]. Another portion

of this chapter was dedicated to show that the same chirality conditions were enough to

find the Hawking temperature in the quantum tunneling method. Here the explicit form

of modes created inside the black hole were obtained by solving the chirality condition.

Then using the Kruskal coordinates relations between the “inside” modes and “outside”

modes were established. Finally, calculation of the respective probabilities yielded that

the left moving mode was actually trapped inside the horizon while right moving mode

can come out from the horizon with a finite probability. Thus this analysis manifested the

crucial role of the chirality to give a unified description of both tunneling and anomaly

approaches.

In the fifth chapter, the Hawking emission spectrum from the event horizon was de-

rived based on our reformulated tunneling mechanism introduced in the previous chapter.

Using the density matrix technique the average number of emitted particle from the hori-

zon was computed. The spectrum was exactly that of the black body with the Hawking

temperature. Thereby we provided a complete description of the Hawking effect in the

tunneling mechanism. The absence of any derivation of the spectrum was a glaring

omission within the tunneling paradigm.

In the next chapter, a unified description of Unruh and Hawking effects was discussed

by introducing a new type of global embedding. Since the thermodynamic quantities of



109

a black hole are determined by the horizon properties and near the horizon the effective

theory is dominated by the two dimensional (t− r) metric, it is sufficient to consider the

embedding of this two dimensional metric. Considering this fact, a new reduced global

embedding of two dimensional curved space-times in higher dimensional flat ones was

introduced to present a unified description of Hawking and Unruh effects. Our analysis

simplified as well as generalised the conventional embedding approach.

In chapter - 7, based on the modified tunneling mechanism, introduced in the previ-

ous chapters, we obtained the entropy spectrum of a black hole. Our conclusions were

following:

• In Einstein’s gravity, both entropy and area spectrum are evenly spaced.

• On the other hand in more general theories (like Einstein-Gauss-Bonnet gravity),

although the entropy spectrum is equispaced, the corresponding area spectrum is

not.

In this sense, it was legitimate to say that quantization of entropy is more fundamental

than that of area.

Finally, based on the above conceptions and findings, we explored an intriguing possi-

bility that gravity can be thought as an emergent phenomenon. Starting from the defini-

tion of entropy, used in statistical mechanics, we showed that it was proportional to the

gravity action. For a stationary black hole this entropy was expressed as Sbh = E/2TH ,

where TH and E were the Hawking temperature and the Komar energy respectively. This

relation was also compatible with the generalised Smarr formula for mass.

There are certain issues which are worthwhile for future study.

• The inclusion of grey body effect within the tunneling approach would be an in-

teresting exercise. The analysis given here did not include the grey body effect.

Consequently, the flux obtained was compared with that associated with the per-

fect black body.

• Another important issue is the computation of black hole entropy by using the

anomaly approach. There are strong reasons to believe that the black hole entropy,
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like Hawking flux can be related to the diffeomorphism anomaly [14, 150, 151, 152,

153, 154, 155]. For example, in the analysis of [150, 151] the counting of microstates

was done by imposing the “horizon constraints”. The algebra among these “horizon

constraints” commutes only after modifying the generators for diffeomorphism sym-

metry. This modification in the generators give rise to the desired central charge,

which ultimately leads to the Bekenstein-Hawking entropy. This is roughly similar

to the diffeomorphism anomaly mechanism.

• So far, not much progress has been achieved in the understanding of the Unruh

effect by the gravitational anomaly method. The main difficulty lies in the fact

that the Unruh effect is basically related to flat space-time and the observer must

be uniformly accelerated. So a naive use of the anomaly expressions is unjustified.

In this thesis it was shown that the flat space embedding of the near horizon effective

two dimensional (t−r) metric was enough for giving a unified description of Hawking

and Unruh effects and it simplified as well as generalized earlier facts. The local

Hawking temperature was exactly equivalent to the one detected by the Unruh

observer. Again, in the gravitational (chiral) anomaly expressions the metric that

contributed was the aforesaid effective metric. It may be possible to translate these

expressions for the anomaly in the embedded space and establish a connection with

the Unruh effect.

• The last point I want to mention is that in chapter-8, an emergent nature of gravity

was illustrated from a statistical point of view. These discussions were confined to

the four dimensional Einstein gravity without cosmological constant. It would be

fascinating to extend our discussion to higher dimensional Einstein gravity (with

or without cosmological constant) and more general gravity theories (e.g. Lovelock

gravity). If this attempt is successful, then one will be able to give a unified form

of the Smarr formula for all such theories.

It is thus clear that the quantum tunneling mechanism, provided in this thesis, could

illuminate the subject of thermodynamics of gravity, more precisely, the black hole.
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